
Multi A(ge)nt Systems on
Graphs

Michael Amir

Multi A(ge)nt Systems on
Graphs

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Michael Amir

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tishrei 5783 Haifa October 2022

This research was carried out under the supervision of Prof. Alfred M. Bruckstein, in
the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral
research period, the most up-to-date versions of which being:

Michael Amir and Alfred M Bruckstein. Probabilistic pursuits on graphs. Theoretical Com-
puter Science, 2019.

Michael Amir and Alfred M. Bruckstein. Minimizing Travel in the Uniform Dispersal Problem
for Robotic Sensors. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, pages 113–121, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems, 2019. (Visited on 07/30/2022).

Michael Amir and Alfred M. Bruckstein. Fast uniform dispersion of a crash-prone swarm. In
Proceedings of Robotics: Science and Systems, RSS ’20, 2020.

Michael Amir, Noa Agmon, and Alfred M Bruckstein. A discrete model of collective marching
on rings. International Symposium Distributed Autonomous Robotic Systems:320–334, 2021.

Dmitry Rabinovich*, Michael Amir*, and Alfred M. Bruckstein. Optimal physical sorting of
mobile agents, 2021. arXiv: 2111.06284.

Michael Amir, Noa Agmon, and Alfred M. Bruckstein. A locust-inspired model of collective
marching on rings. Entropy, 24(7):918, June 2022.

Ori Rappel*, Michael Amir*, and Alfred M. Bruckstein. Stigmergy-based, dual-layer coverage
of unknown indoor regions, 2022. arXiv: 2209.08573 [cs.MA].

Michael Amir, Yigal Koifman, Yakov Bloch, Ariel Barel, and Alfred M. Bruckstein. Multi-
agent distributed and decentralized geometric task allocation, 2022. arXiv: 2210 . 05552
[cs.MA].

An asterisk (*) denotes equal contribution.

The generous financial help of the Technion is gratefully acknowledged.

https://arxiv.org/abs/2111.06284
https://arxiv.org/abs/2209.08573
https://arxiv.org/abs/2210.05552
https://arxiv.org/abs/2210.05552

Contents

Abstract 1

1 Introduction 3

2 Preliminaries 7
2.1 A Multi-Agent Systems on Graphs Toolbox 7
2.2 Summary . 12

3 Natural Algorithms I: Ant-like Probabilistic Pursuits on Graphs 13
3.1 Introduction . 13
3.2 Preliminary Characterizations . 15
3.3 Convergent and Stable Graphs . 24

3.3.1 Pseudo-modular Graphs . 25
3.3.2 Graph Products . 28
3.3.3 Planar and Chordal Graphs . 34

3.4 The Uniform Stationary Distribution . 38
3.5 Discussion . 42

4 Natural Algorithms II: A Locust-inspired Model of Collective March-
ing on Rings 43
4.1 Introduction . 43
4.2 Related work . 45
4.3 Model and definitions . 48
4.4 Stabilization analysis . 50

4.4.1 Locusts on narrow ringlike arenas (k = 1) 51
4.4.2 Locusts on wide ringlike arenas (k > 1) 56

4.5 Simulation and empirical evaluation . 67
4.6 Discussion . 69

5 Swarm Robotics I: Minimizing Energy in the Multi-Robot Uniform
Dispersion Problem 71
5.1 Introduction . 72
5.2 Model . 74

5.3 Find-Corner Depth-First Search . 75
5.3.1 Analysis . 77
5.3.2 The number of persistent states 81
5.3.3 The impossibility of minimizing total travel for general grid en-

vironments . 83
5.4 Simulations, comparisons, and alternative strategies 85
5.5 Discussion . 89

6 Swarm Robotics II: Uniform Dispersion With Crash-prone Robots 91
6.1 Introduction . 92

6.1.1 Related work . 95
6.2 Model and System . 96
6.3 Dispersal and Spanning Trees . 97

6.3.1 Analysis . 98
6.3.2 Synchronous time and multiple sources 105

6.4 Simulation and evaluation . 106
6.5 Analysis details . 107

6.5.1 Proof of Lemma 6.3.8 . 107
6.5.2 Proof of Lemma 6.3.9 . 108
6.5.3 Proof of Lemma 6.3.10 . 109
6.5.4 Proof of Lemma 6.3.12 . 110
6.5.5 Proof of Lemma 6.3.13 . 110

6.6 Discussion . 111

7 Swarm Robotics III: Physical Sorting 113
7.1 Introduction . 114
7.2 Related Work . 116
7.3 Model . 118
7.4 A lower bound on makespan . 120
7.5 Optimal algorithm for normal configurations 128
7.6 Non-normal initial configurations . 131
7.7 Discussion . 137

7.7.1 An almost optimal distributed solution 138

8 Conclusion 141

Bibliography 145

Hebrew Abstract i

Abstract

Multi-agent systems are a fascinating, multidisciplinary field with applications to robotics,
distributed systems, biology, and social dynamics. A multi-agent system is a distributed
system composed of several interacting, autonomous agents that cooperate to achieve
some desired outcome. The topic of this thesis is the way in which local interactions
between extremely simple agents can result in desirable global states. We study this
topic from two perspectives: the perspective of an observer of the natural world, and
the perspective of a designer of swarm-robotic systems. In the natural world, living
swarms of organisms seem to effortlessly and autonomously coordinate their motion.
How do swarms of locusts converge to a single direction of motion? Why are trails of
ants so straight and nice? As observers, our goal is to study the principles underlying
these kinds of phenomena, learning what we can from Mother Nature’s algorithms. As
designers, on the other hand, our goal is to create and guarantee the performance of
swarm-robotic systems. Over the course of this thesis we seek to establish that even
severely myopic and computationally limited robots can be remarkably effective when
working together. We shall show that, with the right local algorithm, such robots
can explore unknown environments, recover from crashes, equally split workloads, and
optimize traffic systems.

Almost all mathematical models in this thesis assume the agents move in a space
that is finite and discrete; namely, a graph environment, where spatial locations are
indicated by vertices and the ability of an agent to move between them by edges. From
a theoretical standpoint, the study of these types of multi-agent models is often ad
hoc, and relatively few general techniques are known. A main goal of this thesis is to
highlight a number of techniques that have proven repeatedly useful in the analysis
of such models, including exchangeability, coupling, potential (“Lyapunov”) functions,
interacting particle systems, and stationary distributions.

1

2

Chapter 1

Introduction

It is common in the field of multi-robot systems to assume each robot possesses a
powerful CPU, large memory, intricate broadcast capabilities, and rich geographical
information. In the natural world, however, swarms of living organisms with far more
limited capabilities seem to effortlessly coordinate their actions to a degree even so-
phisticated computer algorithms often struggle to reproduce. Consider the way birds,
or locusts, dance in the sky before suddenly converging in one direction. Consider how
the lights of fireflies turn on and off at the same time without a conductor. Consider
the way ants find efficient paths to sources of food, though no ant has a map of its
geographical environment. These phenomena are all examples of agents enacting a
simple-but-effective local algorithm that helps them attain a shared goal. As engineers,
we are tempted to push the boundaries of multi-robot systems by taking advantage
of more and better: computation, communication, information. Mother Nature’s de-
signs, however, must remain adaptive enough to survive millions of years of evolution
across different environmental conditions and species. She cannot make state of the
art demands of the agents (living creatures) that use her algorithms, and must aim
for simplicity, sometimes even universality in her design. Should we not strive for the
same?

Driven by such questions, the goal of this dissertation is to deepen our understand-
ing of the way extremely simple, local interactions between mobile-robotic or living
agents can result in a desirable global state. We approach this goal from two different
perspectives: that of a designer or engineer wishing to control a large swarm of robots
with severely limited computation and sensing capabilities, and that of an external
observer of the natural world, studying the algorithmic behaviors of swarms of living
organisms.

As algorithm designers, we aspire to find simple algorithms for simple robotic
swarms that result in something useful on the macro scale. The algorithms are meant
to work with robots that are suitable for mass-production, cheap, technologically lim-
ited, and readily disposable. We assume only that said robots can implement local,
computationally trivial algorithms, similar to those enacted in nature by social insects.

3

Formally speaking, our assumptions are captured by the ant-robotics paradigm, which
places severe restrictions over our robots’ sensory systems, memory, and computational
capabilities. Specifically, we assume:

(i) Robots are completely autonomous, and must make their own decisions based on
what they currently sense.

(ii) Robots are anonymous and identical, with every robot executing the same local-
sensing based algorithm.

(iii) Robots have no means of communicating outside their sensing range. Inside
their sensing range, agents only communicate in simple, implicit ways such as by
detecting each others’ location or (in some settings) through very simple visual
signals.

(iv) Robots are oblivious or almost-oblivious, meaning they have very few or no per-
sistent states, and their current actions are determined primarily or entirely by
what they currently sense.

Despite these limitations, we shall show that, when instead of a single robot we
have access to a huge swarm, even simple robots can be remarkably versatile: through
coordination and the right local algorithm, they can explore unknown environments,
recover from crashes, equally split workloads, optimise traffic systems, among many
other applications.

The ant-robotics paradigm was originally modelled after swarms of social insects
[EB13]. The paradigm is inspired by the observation that in natural swarming phe-
nomena (such as those of ants, locusts, fireflies), centralization, long-term memory and
non-spatial communication are often unnecessary. It confers two important practical
advantages: first, due to the low hardware requirements, it is highly scalable, both
from a systems and a mass-production perspective. Second, the ants paradigm is, by
design, naturally resilient to error. The severe restrictions placed on the agents mean
that the decisions robots make are relatively disentangled from each other, and so the
overall robotic system can often continue to work even if some robots are displaced or
crash. These advantages will be repeatedly highlighted in the many different models
and algorithms we shall study.

As external observers of nature, our goal is to find and study algorithmic principles
inspired by swarms of social insects–specifically ants and locusts. Here we should
emphasize that the goal is not to model ants or locusts. The precise models underlying
such insects’ behaviours are very complex and subject to intense ongoing research,
e.g. [AA15; AAA16; AOL+14; KSA+21; KAGA19]. Our goal is to look at a natural
phenomenon and glean from it a simple, useful algorithm or model of behaviour, which
we then analyze as a case study. For example, one thing we look at in this work
(Chapter 4) is the following well-documented experiment [AAA16]: place many locusts

4

on a ringlike arena at random positions and orientations. They start to move around
and bump into the arena’s walls and into each other, and as they do so, remarkably,
over time, they begin to collectively march in the same direction–either clockwise or
counterclockwise (see Figure 1.1). Inspired by these experiments, we ask the following
question: what are simple and reasonable myopic rules of behaviour that might lead
to this phenomenon? Our goal shall be to study this question from an algorithmic
perspective, by considering a swarm of autonomous and identical discretized mobile
agents that act according to a local algorithm.

Figure 1.1 The collective clockwise marching of locusts in a ring arena (image by
Amir Ayali).

These types of investigations are related to the field of natural algorithms, whose
fundamental assertion is that the behaviour of natural organisms can be understood us-
ing concepts from the theory of robotics and computer science [Cha12; AB19a; Cha18],
such as complexity analysis, look-compute-move phases, and decision-making based on
discrete internal states. Natural algorithms open up interplay between biology and
computer science, allowing us to study nature through the language of algorithms and
vice-versa, allowing us to apply principles, algorithms and mechanisms gleaned from
nature to the design of algorithms meant to service humans, such as those enacted by
multi-robot systems.

Multi-A(ge)nt Systems on Graphs

We shall study swarms primarily through a theoretical lens, by proposing formal math-
ematical models and proving structural and/or performance guarantees within these
models. Almost all mathematical models in this work assume the agents move in a
space that is finite and discrete; namely, a graph environment, where spatial locations
are indicated by vertices and the possibilities to move between them by edges.

The formal mathematical study of swarms, and especially swarms modelled over dis-
crete topologies such as graphs, is often ad hoc, and very few general proof techniques
are known. To this end, one goal of this dissertation is to document (and sometimes

5

extend) some techniques that we found repeatedly useful in the analysis of such models,
including exchangeability, coupling, potential (“Lyapunov”) functions, stationary dis-
tributions, and interacting particle systems. These techniques are described in Chapter
Chapter 2 (Preliminaries), and their applications are highlighted wherever they occur
in subsequent chapters.

Overview

Chapter 2 (Preliminaries) introduces mathematical concepts and techniques. Chapters
3-7 contain our main results. In Chapters 3 and Chapter 4 we study mathematical
models inspired by two distinct natural phenomena: trails of ants and the collective
marching of locusts. In Chapters 5 and 6 we discuss the uniform dispersion problem
for robotic sensors, a fundamental problem in swarm robotics wherein we are tasked
with deploying a swarm of simple autonomous robots inside an a priori unknown envi-
ronment. In Chapter 7 we discuss the problem of “physical sorting,” in which we are
tasked with reorganizing mobile agents confined to a narrow space. Chapters 3-7 are
based on the papers [AB19a; AAB21; AB20; AB19b; RAB21; AAB22]. In Chapter 8
(“Conclusion”) we place our results in the broader context of swarm robotics and briefly
discuss two additional, forthcoming papers that did not make it into this dissertation
[RAB22; AKB+22].

6

Chapter 2

Preliminaries

The goal of this chapter is to give an overview of several concepts and techniques that
we use in formal mathematical analysis throughout this work. As mentioned in the
introduction, the formal mathematical study of multi-agent systems is often ad hoc,
and very few general proof techniques are known. To this end, we found it important
to document several ideas we found repeatedly useful in the analysis of such systems.
These ideas have been lifted from fields such as discrete probability theory, statistical
mechanics, and dynamical systems. Gathered in one place, they form a toolbox for
studying multi-agent systems on graphs.

We keep things deliberately informal. All citations in this chapter are references
to textbooks or review articles that provide additional background. Additionally, this
chapter does not need to be read from cover to cover: for the readers’ convenience, at
the end of the chapter a table is provided (Table 2.1) documenting which techniques
are used in which chapters.

2.1 A Multi-Agent Systems on Graphs Toolbox

Graphs. We begin (naturally) with the formal definition of a graph:

Definition 2.1.1. A graph is a structure made of vertices and edges that connect
them. Graphs are denoted G = (V, E), where V is a set of vertices and E ⊆ V × V

is a set of edges connecting pairs of vertices (vi, vj). A graph is called undirected if
(vi, vj) ∈ E implies (vj , vi) ∈ E; otherwise it is called directed.

Graphs are the fundamental setting of this work. They define the environments our
mobile agents inhabit. Specifically, throughout this work, the vertices of a graph rep-
resent locations, and an edge (vi, vj) indicates that an agent can move from vi to vj .
For a deeper dive into graphs and graph theory we refer the reader to Gibbons, 1985
[Gib85], or to Golumbic, 2004 [Gol04a].

7

Markov chains. Another fundamental tool that we shall use when studying
stochastic multi-agent systems (i.e., systems where agents make probabilistic choices)
is the Markov chain. A Markov chain is a memoryless stochastic process: its next state
depends only on its current state.

Definition 2.1.2. A Markov chain is collection of random variables (Xt)t, t = 0, 1, . . .,
having the property that for all t, Xt+1 depends only on Xt:

P (Xt+1 = j|Xt, Xt−1, . . . X0) = P (Xt+1 = j|Xt) (2.1)

We assume everywhere in this dissertation that our Markov chains are time ho-
mogenous, which means that P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i).

One example of a Markov chain is the random walk. A random walk on a graph
G = (V, E) is a process that begins at some vertex v ∈ V , and at each time step moves
to another vertex chosen at random among the neighbors of the present vertex.

The Markov chains we discuss in this work are assumed to have a finite number of
states, unless explicitly stated otherwise. Finite Markov chains are also associated with
a stochastic matrix representing the probabilities of state transitions:

Definition 2.1.3. The stochastic matrix describing a Markov chain (Xt) is the matrix
M whose (i, j)-th entry equals the probability of moving to state j given current state
i: Mij = P (X1 = j|X0 = i).

We shall sometimes use the term “stochastic matrix” also to refer to the transpose
stochastic matrix of some Markov chain, MT . For further reading on Markov chains
we defer to Asher et al., 2009 [LPW09].

We now have the language to introduce a well-known and highly useful technique
for studying multi-agent systems.

Stationary distributions. Let v be some arbitrary “initialization” vector whose
ith entry represents the probability of X0 being at state i. Intuitively, vM represents
the probability distribution of the process after one step, i.e., the probability distrbution
of X1. When vM = M , v is called a stationary distribution.

Definition 2.1.4. A vector π for which πM = π is called a stationary distribution of
the stochastic matrix M . [LPW09]

Many theorems, which we will introduce in this work as needed, state simple con-
ditions under which Markov chains must eventually converge to a unique stationary
distribution. Informally, the existence of a unique stationary distribution is useful to us
because it tells us how the multi-agent system will behave at time t =∞. For example,
consider a graph G = (V, E) where the vertex v∗ contains some kind of payload. n

agents are located on this graph, each of them searching for the payload by doing a

8

random walk until they stumble onto the vertex v∗, at which point they cease their
operations and remain at v∗ forever.

This simple scenario meets the definition of a Markov chain (the combined vertex
locations of the agents are its states). It is difficult, and tedious, to compute the
expected amount of time the agents will take to find v∗, but it is simple to prove that
the unique stationary distribution of this Markov chain is the one where all agents are
located at v∗, and that it converges to this distribution over time. In other words, we
may not know how the multi-agent system evolves, but we know how it behaves at
t =∞! Throughout this work, having some notion of the state of the system at t =∞
shall serve as an important “building block” for studying its behavior over time. For
example, in Chapter 4 we use stationary distributions to show that a configuration of
agents walking around in a ring-like arena “must” converge to the same direction of
motion: knowing that it must do so in turn enables us to study the expected time it
takes for this convergence to occur. In the same chapter, we also use the stationary
distribution of the so-called “Discrete Heat Equation” [Law10] to prove a crucial lemma.
In Chapter 3, stationary distributions are a primary object of study, and we use them
to characterize the limiting behaviour of sequences of ant-like agents pursuing each
other.

Coupling. In probability theory, coupling is a proof techniques that enables com-
paring two stochastic processes. Suppose we have two coins, the first with probability
1/2 of turning up heads and the second with probability 2/3 of turning up heads. Let
P 1

n(k) be the probability that the first coin turns up heads at least k times in n tosses,
and let P 2

n(k) be the probability that the second coin turns up heads at least k times in
n tosses. Suppose we want to prove the intuitive claim that P 1

n(k) ≤ P 2
n(k). One way

to do this is by direct computation - but this is a little tedious. Another way is by the
following argument: let X1, X2, . . . Xn be indicator variables for the first coin, such that
Xi = 1 if the ith toss of the first coin is heads, and Xi = 0 otherwise. Let Y1, Y2, . . . Yn

be a sequence of indicator variables such that if Xi = 1 then Yi = 1 and if Xi = 0 then
Yi = 1 with probability 1/3. We can verify that the probability that Yi = 1 is precisely
2/3, i.e., the sequence Y1, Y2, . . . Yn has exactly the same distribution as a sequence of
n tosses of the second coin. Furthermore, by construction ∑n

i=1 Xi ≤
∑n

i=1 Yi. Since
P 2

n(k) = P (
∑n

i=1 Yi ≥ k), this implies P 1
n(k) ≤ P 2

n(k), as desired.
Informally speaking, the idea of coupling is to compare two independent stochastic

processes A and B by looking at two dependent stochastic processes C and D such
that C has the same distribution as A and D has the same distribution as B. In
Chapter 4, coupling enables us study the evolution of a locust-like swarm of mobile
agents through well-known results about random walks. In Chapter 6, a sequence of
several coupling arguments enables us to compare the behavior of a robotic swarm
on a graph environment G with that of the same robotic swarm on another graph
environment, G∗. We use this comparison to prove upper bounds on the time it takes

9

the swarm to complete a graph coverage mission.
For an excellent reference on probabilistic coupling we refer the reader to [Lin02].

Exchangeability. A classic riddle goes: suppose you drop n identical ants on a
stick which is a meter long. Each ant begins travelling either to the left or to the right
with speed 1 meter per minute. When two ants meet, they bump into each other and
flip their direction of motion. When an ant reaches the end of the stick, it falls off.
Can you bound the time it takes all ants to fall off in any configuration? [Win07]

Solution: assume that instead of changing direction, ants bumping into each other
simply pass through each other and continue moving in the same direction. Since
ants all move at the same speed, the dynamics of the system remain the same after
relabelling the ants (an outside observer wouldn’t be able to tell the ants are passing
each other rather than flipping directions). So the longest time an ant could stay on
the stick in any configuration is 1 minute.

Let us call a multi-agent system exchangeable if any two agents labelled A1 and A2

can have their locations and labels exchanged without affecting the system’s evolution.
The ants walking on the stick are exchangeable. Most of the swarm robotic systems
we investigate in this work agents are stateless, and act only on what they currently
sense, hence are exchangeable. Exchangeability is useful when two agents A1 and A2

are difficult to keep track of individually, but by relabelling them we can create “virtual
entities” that are easier to study. In Chapter 7, we use exchangeability to create an
ordered set of virtual mobile agents, and study the virtual agents instead of the original,
underlying agents.

A related idea comes up in statistics: a sequence of random variables X1, X2, . . . Xn

is called exchangeable if the joint probability distribution (X1, X2, . . . Xn) does not
change when the positions of any pair of random variables Xi and Xj are exchanged
(for example, (X1, X2, . . . Xn) and (X2, X1, . . . Xn) have the same distribution). Here’s
an example from [BMW97]: suppose an urn contains n black and m white marbles,
which are drawn from an urn without replacement until the urn is empty. Let Xi = 1 if
the ith marble is black and Xi = 0 if it is white. Then X1, . . . Xn+m is an exchangeable
sequence. This fact is used in [BMW97] to prove that the paths of agents sequentially
pursuing each other on the grid are uniformly distributed. In Chapter 3 we use a
novel generalization (to the best of our knowledge) of the idea of random variable
exchangeability to extend the result of [BMW97] to non-grid graphs.

For further reading on statistical exchangeability we refer the readers to Aldous et
al. [Ald85].

Potential (“Lyapunov”) functions. Potential functions are a powerful tool for
studying ant-like multi-agent systems, and dynamical systems in general. Potential
functions are used to prove that a multi-agent system converges to some state C ∈ S,
where S is a set of target states. In the context of discrete multi-agent systems, the

10

idea of potential functions is this: let Ct denote the current state of a multi-agent
system at time t. Let F (·) be some non-negative function over the state space such
that F (Ct) = 0 if and only if Ct ∈ S. If we can prove that F (Ct) − F (Ct+1) > ε for
some constant ε > 0, then after F (C0)/ε time steps the system will be in a state C ∈ S.

The choice of potential function depends primarily on the set S, which is defined
based on the problem setting. When studying multi-agent consensus, a common poten-
tial function is F (Ct) =

∑
dist(Ai, Aj), the sum of pairwise distances between agents

[BMB17]. When F (Ct) = 0, all agents are necessarily located in the same place, i.e.,
have arrived at consensus. In this example S is the set of all multi-agent configurations
where all agents share the same location. In Chapter 4, we use potential functions to
prove that two swarms of locust-like agents moving toward each other must eventually
arrive at some sort of deadlock.

A variant of the potential function idea is defining a function F (Ct) such that if
F (Ct) = F (Ct+1) then Ct ∈ S. In this variant, the fact that the multi-agent system did
not progress toward something is evidence of its convergence. This variant is used in
Chapter 6. In Chapter 6 we describe an algorithm that disperses agents inside a graph
G. The goal is to have at least one agent at each vertex v ∈ G. The proof of the central
Lemma of Chapter 6 uses potential functions called “depths” to establish that agents
take longest to disperse inside a path graph of length n, hence our algorithm’s time to
completion on path graphs can be used to bound its time to completion on other kinds
of graphs.

TASEP. The totally asymmetric simple exclusion process (TASEP, for short) is a
paradigmatic statistical process used, among other things, to model traffic flow [CSS00]
and biological transport [CMZ11]. In this process there are infinitely many agents on
the integer line Z = {. . . ,−1, 0, 1, . . .}. Each agent is activated independently infinitely
often at an exponential rate of mean 1. Whenever an agent A located at x is activated,
it looks at x + 1. If x + 1 contains another agent, A stays put. Otherwise A jumps to
x + 1.

An important type of TASEP is the “TASEP with step initial condition”, wherein
all agents are initially placed at the non-positive integers {−∞, . . . ,−2,−1, 0}. An
important parameter in this process is the rate at which agents cross from 0 to 1. Let
us write Bt to denote the number of agents that have crossed (0, 1) at time t. It is shown
in [Ros81] that Bt converges to 1

4 t asymptotically almost surely (i.e., with probability
1 as t→∞). [Joh00] shows that the deviations are of order t1/3. Specifically we have
in the limit:

lim
t→∞

P(Bt −
t

4
≤ 2−4/3st1/3) = 1− F2(−s) (2.2)

valid for all s ∈ R, where F2 is what is called the “Tracy-Widom distribution” and
obeys the asymptotics F2(−s) = O(e−c1s3) and 1 − F2(s) = O(e−c2s3/2) as s → ∞.

11

Concept Appears in
Graphs All chapters
Markov chains and stationary distributions Chapters 3, 4
Coupling Chapters 4, 6
Exchangeability Chapters 3, 7
Potential (“Lyapunov”) functions Chapters 4, 6
TASEP Chapters 6, 7

Table 2.1: Applications of concepts and techniques from this chapter in other sections of this
work.

In Chapter 6 we show that the expected time it takes a certain multi-agent algorithm
to disperse n agents inside a graph G of size n is bounded above by the time it takes
n agents to cross the (0, 1) bond in TASEP with step initial condition. We then use
Equation (2.2) to derive asymptotics about the algorithm’s time to completion.

The TASEP model is perhaps the simplest example of a multi-agent system on
a graph (the graph being Z with every pair of consecutive integers connected by an
edge), and many of the multi-agent systems we study in this work can in some way be
related to it. A variant of TASEP has agents all waking up synchronously rather than
independently. A special case of a formula that we derive in Chapter 7 can be related to
this variant: it gives an exact expression for the amount of time a given configuration
of n synchronous agents starting at the negative integers takes to cross the (0, 1) bond.
Another variant of TASEP places agents on a ring of size n (that is, Z/nZ) rather than
on the integers. The multi-agent model we study in Chapter 4 resembles this variant.

For an excellent introduction to TASEP, we refer the reader to [KK10].

2.2 Summary

In this chapter we drew the outline of a toolbox for studying multi-agent systems
on graphs. For easy referencing, Table 2.1 outlines parts of this work where each
concept is used. As evidence for the general usefulness of this toolbox, we observe that
although each chapter of this work is written with a different problem and with different
modelling assumptions in mind, techniques tend to be re-used between chapters. We
hope that this toolbox provides a useful starting point to readers interested in studying
multi-agent systems on graphs.

12

Chapter 3

Natural Algorithms I: Ant-like
Probabilistic Pursuits on Graphs

This chapter is the first of two chapters on the topic of natural algorithms, in which we
study models of multi-agent systems inspired by natural phenomena in an attempt to
better understand how simple, local behaviors can lead to desirable global outcomes.
The natural phenomenon inspiring this chapter is the observation that trails of ants
headed toward a source of food tend to converge to efficient, straight paths, despite ants
having little to no geographical information about their environment. This observation
leads us to consider dynamical systems of “ant-like” agents engaged in chain pursuits
and forming “ant trails” from a source location s to a target location t. We shall
investigate the conditions under which the ant trails resulting from these pursuits form
shortest paths from s to t.

The chapter is based on our paper [AB19a] and serves as an introduction to formal
models of multi-agent systems, to Markov chains and stationary distributions, and to
many interesting families of graphs. A generalization of the “exchangeability” tech-
nique mentioned in the Preliminaries is used in Section 3.4. The work [AB19a] and
its precursors [Bru93; BMW97] were in many ways the initial inspiration behind this
dissertation.

3.1 Introduction

Despite the myopic nature of ants, ant trails tend to be efficient, forming highly optimal
paths from the ants’ nest to their target destination. How can ants find such paths?
A possible explanation based on the notion of “chain pursuits” is given in Bruckstein,
1993 [Bru93]. Bruckstein considers a sequence of ants emerging one after the other
from a source location s. The first ant takes some arbitrary, suboptimal path to its
destination, t, and stops once it reaches t. The second ant, emerging a short amount
of time after the first, pursues the first ant as efficiently as it can, eventually reaching t

as well. A third ant emerges shortly after the second ant and pursues the second ant,

13

and so on. It turns out that in this model the ants’ paths converge to a straight line
from s to t over time. Informally, this is because unless the ith ant walks a perfectly
straight line from s to t, the i + 1th ant will manage to slightly close the distance to
the ith ant, and consequently will get to t via a slightly shorter path than the ith ant’s.

In [BMW97] an analogous result is shown for a discrete model of chain pursuits
over n × n grids. In this model, a sequence of agents A0, A1, A2 . . . emerges from a
source vertex s at times 0, ∆, 2∆, . . . for some fixed integer ∆ > 1. The agent A0 walks
an arbitrary path to the destination vertex t and subsequently stops there forever. For
any i > 0, the agent Ai chases Ai−1 until they both arrive and stop at t. Specifically,
denote the position of Ai at time T as (xi, yi) and let dx = |xi− xi−1|, dy = |yi− yi−1|.
At every time step, Ai may take a single step along either the x or the y-axis of the grid
but not both. Every move that it makes must bring it closer to the current location of
Ai−1 (unless they both stand in the same place, in which case Ai does not move). Most
of the time, Ai will be able to get closer to Ai−1’s location through both the x-axis and
the y-axis. To account for this, Ai chooses, according to a probabilistic rule, whether
it will move on the x or the y-axis: it moves along the x axis with probability dx

dx+dy

and along the y axis with probability dy

dx+dy
.

It is shown in [BMW97] that when agents chase each other according to this pursuit
rule, the walk of the agent Ai converges to a shortest path from s to t as i tends to
infinity, irrespective of the initial path of A0. Furthermore, the unique stationary
distribution of the walks of the agents is shown to be the uniform distribution over all
shortest paths from s to t. Remarkably, since in a grid graph (drawn on the plane in
the usual way) the vast majority of shortest paths from s to t pass through vertices
which are close to the straight line from s to t, the positions of the agents A0, A1, A2, . . .

will lie very close to this line almost all the time, and so the “ant trails” that the agents
form on the grid will almost always look approximately like a straight line, mirroring
[Bru93].

The purpose of this work is to study an extension of the model proposed in [BMW97]
wherein pursuit takes place on a fixed but arbitrary graph G. Our pursuit rule is
outlined in Definition 3.1.2. When the underlying graph G is a grid, this rule coincides
with the pursuit rule of [BMW97] described above.

Definition 3.1.1. A walk is a sequence of vertices v1v2 . . . vn such that an edge exists
between each vi, vi+1. A path is a walk where for all 1 < i, j < n, vi ̸= vj . The (vertex)
length of a path or walk is the number of vertices it traverses, and is written |P |. For
example, if P = v1v2v3 then |P |= 3.

Definition 3.1.2 (Pursuit rule). For all i > 0, the agent Ai pursues agent Ai−1 by
selecting, uniformly at random, a shortest path in G from its current vertex to the
current location of Ai−1, and moving to the first vertex of that path. (The shortest
path from a vertex v to itself is defined as the reflexive path v → v. Hence when both
Ai and Ai−1 are located on the same vertex, Ai will stay in place).

14

Results. We shall show that convergence to the shortest paths in the sense of
[BMW97] extends to all pseudo-modular graphs (i.e. graphs in which every three
pairwise intersecting disks have a nonempty intersection), and also to environments
obtained by taking graph products. Both these results include grid graphs as a special
case, generalizing the result of [BMW97]. We shall also show that convergence to the
shortest paths is obtained by chordal graphs (i.e. graphs in which all cycles of four
or more vertices have a chord), and discuss some further positive and negative results
for planar graphs. In the most general case, convergence to the shortest paths is not
guaranteed, and the agents may get stuck on sets of recurrent, non-optimal walks from
s to t. However, we shall show that the stationary distributions of the agents’ walks
will always be uniform distributions over some set of walks of equal length, generalizing
[BMW97]’s result about uniform agent path distributions on the grid.

Related work. The question of whether ants need to estimate geometrical prop-
erties of the underlying surface to converge to the optimal path was posed by Feynman
[Fey85] and has since been investigated in both robotics and biology, inspiring research
into networks, cooperative multi-agent algorithms and dynamical systems (cf. [Bru93;
BMW97; GCJT13; PSZ09; SH06]). Here we are interested in whether, when ant-like
agents pursue each other using a simplistic logic that requires no persistent states and
only local information regarding the environment, the “trails” they traverse on the
graph converge to the shortest paths from the source vertex s to the destination vertex
t. We are also interested in the probability distribution of these trails as time goes to
infinity.

Various notions of pursuit have been extensively investigated for graphs under the
subject of “cops and robber” games, where one or more agents attempt to capture a
moving target (see [BN11] for a general survey). A greedy pursuit rule was investigated
in e.g. [IK08]. Our objective is completely different, as we are instead interested in the
structure over time of the trails formed by configurations of agents in pursuit of each
other.

3.2 Preliminary Characterizations

In the chain pursuit model over graphs, we are given an undirected, finite, reflexive
(meaning the edge (v, v) exists for every vertex v) graph G and two vertices s, t ∈ G

(not necessarily different). The vertex s will be called the source vertex, and t the
destination vertex. Ants (a(ge)nts) emerge at s and pursue the ants that left before
them as they walk towards the destination vertex (where they shall stop). Specifically,
the first ant, A0, follows an arbitrary finite walk from s to t, taking one step across an
edge of this walk every unit of time. Furthermore, every ∆ units of time - for some
parameter ∆ - the ant Ai leaves s and pursues ant Ai−1 (taking one step per time unit)
according to the pursuit rule described in Definition 3.1.2.

15

Here, ∆ (“delay time”) is an important parameter, and we will always assume that
it is greater than 1. The pursuit rule guarantees that the distance between Ai and Ai−1

is bounded by ∆. This is because the distance is initially at most ∆, and at every time
step Ai will close the distance to Ai−1’s location by one vertex and Ai−1 will move away
from that location by at most one vertex, so the distance between them (so long as it
is above 0) is either preserved or shortened. By the same reasoning, whenever there is
a point in the pursuit where d(Ai, Ai−1) = x > 0, the distance between the ants will
never subsequently increase above x. The one exception is when d(Ai, Ai−1) = 0 and
both ants haven’t yet stopped at t. In such cases, the distance might increase to 1
after one time step (as Ai will stay in the same spot but Ai−1 might step to another
vertex), but it will remain at most 1 from there on (note that since ∆ > 1 this does
not contradict the earlier bound on the distance). If the distance d(Ai, Ai−1) is x once
Ai−1 reaches t, then Ai will arrive at t after x subsequent steps. Since Ai−1 arrived at
s precisely ∆ time steps before Ai, this means that Ai will arrive at t in ∆ − x ≥ 0
less steps than Ai−1. Consequently, the walk lengths of subsequent ants in the chain
pursuit are non-increasing.

Note that in order to carry out the pursuit rule, every ant needs only local informa-
tion about the graph (it need only know the disk of radius ∆ about its current vertex).
In Chapter 1 we discussed the ants paradigm in swarm robotics, which assumes robots
in the swarm are identical and oblivious, and can only act based on local sensing. As
expected of a multi-agent system inspired by nature, if we were to implement our chain
pursuit model in a robotic swarm, it would fit perfectly within the assumptions of this
paradigm.

We wish to understand the lengths of the walks of the ant Ai as i→∞, and their
eventual distribution, assuming an arbitrary initial walk for ant A0. In particular, we
want to know if, in finite expected time, the walk of Ai will be an optimal path from s

to t.
We denote the graph walk taken by Ai as P (Ai). To model the distribution of ant

walks over time we consider a Markov chain M∆(s, t), parametrized by the vertices
s, t and a positive integer ∆, whose states are all (the infinitely many) possible walks
from s to t. The transition probability from P1 to P2 is defined as Prob[P (Ai+1) =
P2|P (Ai) = P1], assuming the given value of ∆.

In this work we are primarily interested in studying the closed communicating
classes ofM∆(s, t) (closed classes for short). A closed communicating class is a subset
of states of M∆(s, t) such that every two states communicate with each other, and
no state in the set communicates with a state outside the set. A state Pi is said to
communicate with state Pj if it is possible, with probability greater than 0, for the
chain to transition from Pi to Pj in a finite number of steps (the reader may find more
detail in the first chapter of [LPW09], or in [MT93]).

Consider the (finitely many) walks and closed communicating classes of M∆(s, t)
reachable from the initial state P (A0). Once an ant takes a walk that belongs to a closed

16

communicating class, the walk choices of all ants that emerge in the future will belong
to this class. Additionally, since the length of P (A0) is finite and ants cannot transition
to a walk of length greater than this, the walks of our ants become such that they belong
to a closed communicating class in finite expected time (see [LPW09]). Hence, closed
communicating classes capture the notion of “stabilization” in our dynamical system.

Figure 3.1 The behavior over time of chain pursuit over a grid graph with two “holes”.

In Figure 3.1 we show the behavior over time of our dynamical system when ∆ = 2
over a grid with “holes”. Each image illustrates the walk taken by some Ai (here we
show the walk of every agent individually, though in an actual simulation, multiple
ants would be walking on the graph concurrently). The image to the left shows the
walk taken by A0, and the image to the right shows a walk belonging to the closed
communicating class at which the pursuit stabilized. As we can see, though the ants
typically manage to shorten the walk of the initial agent P (A0) over time, they are by

17

no means guaranteed to converge to an optimal path.
In fact, for the particular graph environment of Figure 3.1 (a grid with “holes”),

there exist an infinite number of closed communicating classes, containing walks of
arbitrary length. The loops of the walk P (A0) around each of the holes determines the
kinds of walks the ants may converge to.

Nevertheless, closed communicating classes C have some nice regularity properties.
As an initial observation we will show that the walks belonging to a closed class must
all have the same length, i.e. traverse the same number of vertices, denoted by |P |.

Lemma 3.2.1. Let C be the set of walks in a closed class of M∆(s, t). Then for all
Pl, Pk ∈ C, |Pl|= |Pk|.

Proof Assume that there are two walks in C such that |Pl|< |Pk|. The walk Pl is a
reachable state belonging to the closed class. However, once an ant takes walk Pl,
it will never take Pk again since by the pursuit rule, walk lengths are monotonically
non-increasing. Thus Pk is not recurrent in the class, a contradiction. ■

Of particular interest are closed classes that contain the shortest paths from s to
t, or a subset of these paths. In [BMW97] it was shown that when G is a grid graph,
M∆(s, t) has a unique closed class containing all the shortest paths. Later we will see
that whenever M has a unique closed class, it is necessarily the class of all shortest
paths.

A concept that will be used in our arguments is δ-optimality:

Definition 3.2.2. We will say that a walk P = v1v2...vn is δ-optimal, if, for any two
vertices vi, vi+δ ∈ P we have that dG(vi, vi+δ) = δ (where dG(u, v) denotes the distance
between two vertices in G).

We note that dG(vi, vi+δ) = δ implies that vivi+1 . . . vi+δ is a shortest path from vi

to vi+δ. Therefore we have by extension that dG(vi, vi+k) = k for any k ≤ δ.
An important observation is that walks which belong to a closed class C ofM∆(s, t)

must be ∆-optimal:

Lemma 3.2.3. Let C be the set of walks of some closed class of M∆(s, t). Then any
walk in C is ∆-optimal.

Proof Suppose for contradiction that there is some walk P ∈ C that is not ∆-optimal.
Since we are in a closed class, this walk is recurrent. Thus after finite expected time
some ant Ai will take walk P . After ∆ time, an ant Ai+1 will start chasing Ai via some
path in C, maintaining a distance of ∆ or less from Ai at every time step.

If Ai+1 ever manages to decrease the distance to Ai below ∆, then it will arrive at t

in less steps than Ai, contradicting Lemma 3.2.1. Hence, we will assume that the initial
distance between Ai+1 and Ai is ∆. We shall show that there exists a legal “pursuit
strategy” for ant Ai+1 that can occur with non-zero probability, and will cause the

18

distance between Ai and Ai+1 to drop below ∆. This leads to a contradiction (due to
Lemma 3.2.1).

Since Ai follows a non-∆-optimal walk, there exists a vertex vl along P , such that
dist(vl, vl+∆) < ∆. Assume that l is the minimal index for which this occurs. Since l

is minimal, by the pursuit rule, Ai+1 will with some probability pursue Ai using the
vertices v1, v2 . . . vl.

Once ant Ai+1 arrives at vl, Ai will be at vl+∆, having walked from vl to vl+∆

along the vertices of P (Ai) = P . Consequently, at this point in time, we will have
that d(Ai, Ai+1) = d(vl, vl+∆) < ∆. Since Ai+1 has successfully dropped the distance
between itself and Ai below ∆, which was the distance between them at the moment
Ai+1 emerged from s, the walk P (Ai+1) must be shorter than P (Ai). This directly
contradicts Lemma 3.2.1. ■

We will be primarily interested in graphs G for which closed classes contain only
shortest paths from s to t; in other words, graphs on which convergence to a shortest
path is guaranteed. We will consider as a special case graphs for which there is a unique
closed class which contains all shortest paths.

Definition 3.2.4 (Convergent graphs). LetM∆(s, t) be a Markov chain defined over
the graph G. If all closed classes inM∆(s, t) contain only shortest paths from s to t,
then G is called (s, t)-convergent with respect to delay time ∆. When this holds for
all pairs of vertices (s, t), and any ∆ > 1, G is called convergent.

Definition 3.2.5 (Stable graphs). If, for a fixed ∆,M∆(s, t) has a unique closed class,
then G is called (s, t)-stable with respect to delay time ∆. When this holds for all
pairs of vertices (s, t), and any ∆ > 1, the graph G is called stable.

In every Markov chainM∆(s, t) over any graph G there is at least one closed class
that contains a shortest path (since walk lengths are monotonically non-increasing, and
since in G there is a shortest path from s to t and we can set that path to be P (A0)).
Thus if G is stable, the unique closed class of M∆(s, t) contains only shortest paths
from s to t. Thus a stable graph is in particular a convergent graph:

Proposition 3.2.6. If G is (s, t)-stable with respect to ∆, then it is (s, t)-convergent
with respect to ∆.

In fact, as will be shown, stable graphs are precisely the graphs for which the walks
of the ants converge to a unique stationary distribution over all shortest paths from s

to t.
An example of a graph which is convergent but not stable is given in Figure 3.2,

(a). It can be proven simply and directly that it is convergent, with the tools developed
later in this section. It is not stable, since if A0 takes the top shortest path from s to
t no subsequent Ai will ever use the bottom shortest path.

19

Figure 3.2 Examples of graphs which are not convergent or not stable.

1s
1 1

1 1

1

1

1

1
1 t

(a) A convergent graph that is not a stable graph.

1
1

1
1

1 s

t t

(b) C5: A graph which is not convergent.

The simplest example of a graph that is not convergent (so also not stable) is the
cycle on n vertices Cn for n ≥ 5 (Figure 3.2, b). In fact, this graph has an infinite
amount of closed classes for Markov chains with ∆ = 2 formed by looping clockwise
from s to t and back to s any number of times, where s and t are selected to be two
adjacent vertices. It is not difficult to come up with other graphs where convergence
fails (these are typically, but not necessarily, sparse graphs with big cycles) - some
interesting examples are provided in Section 3.3.3.

The value of ∆ is meaningful when discussing (s, t)-stability or convergence. For
instance, the 5-cycle in Figure 3.2, (b) is (s, t)-convergent with respect to ∆ = 3, but
not ∆ = 2.

Our first characterization of stable and convergent graphs will be in terms of local
“deformations” of walks to one another.

Definition 3.2.7 (δ-deformability). 1. Let P = U1U2U3 and P ∗ = U1U ′2U3 be two
walks from v1 to vn, such that Ui is a (possibly empty) sub-walk in G, and such
that |U ′2|≤ |U2|≤ δ − 1. Then P ∗ is said to be an atomic δ-deformation of P .

2. If there is a sequence of atomic δ-deformations of P that results in P ′, then P ′ is
said to be a δ-deformation of P .

A δ-deformation of P can result in a walk of shorter length (by replacing U2 with
a shorter or even empty sub-walk), but will never lengthen it. Atomic 2-deformations
are illustrated in Figure 3.3. Another example can be seen in Figure 3.8, (b), later on.

Intuitively, an atomic δ-deformation of a walk P is a small local change (replacing
at most δ − 1 vertices) of P . We wish to prove the following:

Proposition 3.2.8. G is (s, t)-convergent with respect to ∆ if and only if every walk
from s to t is ∆-deformable to a shortest path from s to t.

20

Figure 3.3 Illustration of a 2-deformation with and without walk shortening.
Illustrated are walks drawn on the 4-cycle and 3-cycle graphs. On the left, we deform
the path v1v2v3 to v1v′2v3. On the right, we deform v1v2v3 to v1v3.

v1

v2 v3

v′
2 v1

v2

v3

Proposition 3.2.9. G is (s, t)-stable if and only if there exists a fixed shortest path P

from s to t such that every walk from s to t is ∆-deformable to P .

Proposition 3.2.8 can be interpreted as saying that if any walk P is transformable
to a shortest path by a sequence of small, local ∆-changes to its vertices, then our ants
are guaranteed to find a shortest path to their destination (in finite expected time),
and vice-versa.

We require some lemmas to prove these propositions.

Lemma 3.2.10. If P is a walk belonging to a closed communicating class ofM∆(s, t),
then so is any ∆-deformation of P .

Proof First we prove the statement for the case of atomic ∆-deformations. Let P ′ =
U1U ′2U3 be an atomic ∆-deformation of P = U1U2U3. Suppose Ai takes walk P . We
will show Ai+1 can take walk P’ with non-zero probability.

We note that since P is ∆-optimal (due to belonging to a closed class), we must
have precisely |U ′2|= |U2| (otherwise the ∆-optimality of P would break at the last
vertex of U1). Therefore we also have that |P |= |P ′|.

Let P = u1u2 . . . un and P ′ = u1 . . . uju′j+1 . . . u′j+∆−1uj+∆ . . . un, such that U ′2 =
u′j+1 . . . u′j+∆−1. It suffices to show that if Ai+1 is standing on the kth vertex of P ′ and
Ai on the (k + ∆)th vertex of P , then Ai+1 may move to the (k + 1)th vertex of P ′ in
the next time step in pursuit of Ai. We show this by separation to cases:

1. If Ai+1 is standing on uk, for 1 ≤ k < j, then Ai is standing on uk+∆, and
by the ∆-optimality of P we have that d(uk, uk+∆) = ∆, implying also that
d(uk+1, uk+∆) = ∆ − 1. Hence, Ai+1 may with some probability move to uk+1,
due to the pursuit rule.

2. If Ai+1 is standing on uj , then since |U ′2|= |U2| we have that d(u′j+1, uj+∆) ≤
∆ − 1 (in fact this is an equality). Furthermore, similar to (1) we have that
d(uj , uj+∆) = ∆, so we may have Ai+1 move to u′j+1 in the next time step.

3. If Ai+1 is standing on u′k for j < k < j + ∆, then since |U2|= |U ′2| we have that
d(u′k, uk+∆) ≤ ∆. However, since P belongs to a closed communicating class,

21

this inequality cannot be strict (otherwise Ai+1 would’ve been able to lower its
overall walk length below |P (Ai)|). Therefore we have that d(u′k, uk+∆) = ∆.
Furthermore due to the indices and the fact that P ′ is a walk we have that
d(u′k+1, uk+∆) ≤ ∆ − 1, so Ai+1 may move to u′k+1 (or uk+1, if k = ∆ − 1) in
pursuit of Ai.

4. If j + ∆ ≤ k, then the proof proceeds similar to (1).

This shows that Ai+1 may always, with some probability, pursue Ai by taking the
next vertex of P ′, and this in turn shows that P ′ belongs to the same closed class
as P . Since any ∆-deformation of P can be constructed from a sequence of atomic
deformations, the proof is complete. ■

Lemma 3.2.11. For a ∆-delay chain pursuit, we have that: for all i, P (Ai+1) is a
∆-deformation of P (Ai).

Proof We will define a sequence P0, P1, P2, . . . PN of atomic ∆-deformations that deform
P (Ai) to P (Ai+1), such that P0 = P (Ai) and PN = P (Ai+1). Pk is defined recursively,
based on Pk−1.

Write P0 = v1 . . . vn1 and PN = u1 . . . un2 , where v1 = u1 and vn1 = un2 . Note
that by the pursuit rule we have for all r that d(ur, vr+∆) ≤ ∆ and that ur+1 lies on a
shortest path from ur to vr+∆. Thus there is always a shortest path from ur to vr+∆

passing through at most ∆− 1 vertices, starting with ur+1.
For a given k, Pk is a ∆-deformation of Pk−1, replacing the sub-walk uk . . . vk+∆

with a shortest path from uk to vk+∆ passing through uk+1 (if k + ∆ > n we set
vk+∆ = vn).

An example of the sequence for ∆ = 3 and |P0|= |PN |= 6 is seen below. xi is an
arbitrary vertex along a shortest path, as constrained by the definition of Pk.

v1v2v3v4v5v6
3−def.⇝

v1u2x3v4v5v6 ⇝
v1u2u3x4v5v6 ⇝
v1u2u3u4x5v6 ⇝
u1u2u3u4u5u6

The following is always true:

1. Pk is a valid walk in G.

2. Pk is always a ∆-deformation of Pk−1, as it replaces at most ∆− 1 vertices (note
that P1 is well-defined since u1 = v1)

3. The first k vertices of Pk match those of PN .

22

So we see that for some N < n2, we will have PN = P (Ai+1), completing the
proof. ■

An important corollary of the Lemmas just proven is that a closed communicating
class C is equal, precisely, to the closure under ∆-deformations of any walk P ∈ C.

To prove Proposition 3.2.8 we apply the lemmas. In one direction, assume that the
graph is convergent. Then for every walk P there is a valid sequence of walks taken by
successive ants (the first ant taking walk P) that goes to a shortest path. By Lemma
3.2.11 this means that every walk can be ∆-deformed to a shortest path. The other
direction follows from lemma 3.2.10, and due to the fact that the walks of the ants will
enter some closed class ofM in finite expected time. ■

To prove Proposition 3.2.9, in one direction, suppose that the graph is stable. So it
has a unique closed class. Recall that every stable graph is a convergent graph. Due to
Proposition 3.2.8 and 3.2.11, this implies that every walk is ∆-deformable to a shortest
path from the unique closed class. All paths in this class are deformable to each other
due to the mentioned closure, so it follows that every walk is deformable to a fixed
(shortest) path. In the other direction, suppose every walk is deformable to the same
shortest path P . Then it immediately follows from 3.2.10 that there is just one closed
class, so the graph is stable. ■

Earlier we mentioned that the unique closed class of M∆(s, t) when G is stable
necessarily contains all shortest paths from s to t. We can now prove this. To start, we
know the unique closed class, that we will denote C, can contain only shortest paths.
Now let P be a shortest path not in C. Since the successors of any agent following this
path must eventually (in expected finite time) end up taking a path in C, it follows from
Lemma 3.2.11 that there is a sequence of atomic ∆-deformations of P - each deforming
it necessarily to another shortest path - such that at the end of this sequence is a
shortest path belonging to C. Let P ′ be the penultimate path in this sequence, that is,
the last one not belonging to C. Any ∆-deformation P ∗ of P ′ cannot shorten it (as it
is a shortest path), thus it necessarily replaces a sub-walk of length k ≤ ∆ − 1 in P ′

with a different sub-walk of length k. But by doing the reverse we can ∆-deform P ∗

back to P ′, thus P ′ belongs to C - contradiction. This gives a stronger characterization
of stable graphs:

Proposition 3.2.12. G is (s, t)-stable (with respect to ∆), iff its unique closed class
contains all shortest paths from s to t.

M∆(s, t) has a unique closed class, and it is easy to see that it is aperiodic when
restricted to this class (since any shortest path taken by Ai has a chance of repeating
itself for Ai+1). Hence it has a unique stationary distribution [LPW09]. Proposition
3.2.12 implies thatM∆(s, t) has a unique stationary distribution if and only if it has a
unique stationary distribution over all shortest paths from s to t. In Section 3.4 we will
show that this distribution must in fact be the uniform distribution over all shortest
paths from s to t.

23

In some sense the delay time ∆ = 2 is a benchmark for whether a graph is convergent
(resp. stable):

Proposition 3.2.13. G is convergent if and only if it is (s, t)-convergent for any pair
of vertices (s, t), with respect to ∆ = 2.

Proposition 3.2.14. G is stable if and only if it is (s, t)-stable for any pair of vertices
(s, t), with respect to ∆ = 2.

Both these propositions follow immediately from the fact that any 2-deformation is
in particular a ∆-deformation for all ∆ > 2. Thus any graph which is convergent (resp.
stable) with respect to ∆ = 2 is also convergent (resp. stable) for ∆ > 2. ■

In other words, we need only prove that a graph is convergent (stable) for ∆ = 2 to
show that it is convergent (stable) for any ∆ > 1. The significance of this is that we can
now consider stability and convergence as properties of graphs rather than properties of
the dynamical system defined by our pursuit rule. As a consequence of the statements
we have proved in this section, we can forget the pursuit rule and consider only the
relations between walks that exist in G. Hence in the following sections, we will
assume that ∆ = 2, unless stated otherwise.

3.3 Convergent and Stable Graphs

Having set up some helpful propositions in the previous section, we can begin to discuss
several interesting classifications of stable and convergent graphs. In [BMW97] it was
shown that the grid is stable. We focus on generalizing this result to broad classes of
graphs that include the grid as a special case.

We want to study graphs whose δ-deformation can easily be understood. We find it
fruitful to study graphs whose induced distance metric has certain kinds of constraints
placed on it (intuitively, constraints that relate to the idea of a simply connected or
convex space or to operations that preserve these). To this end we show that (i)
all pseudo-modular graphs are stable, and that (ii) the stable- and convergent-graph
properties are preserved under taking graph products. We then move to a discussion
of chordal and planar graphs.

We state the following definition and lemma, which will become useful in several
sections:

Definition 3.3.1. Let P = v1 . . . vn be a walk in G. We call two vertices vi, vj

discrepancy vertices of P , if they minimize the difference of indexes j − i under the
constraint that j − i > d(vi, vj).

If P is the shortest path from v1 to vn, then P has no discrepancy vertices. On the
other hand any non-optimal walk must have at least one pair of such vertices. We note
that due to ∆-optimality, if P belongs to a closed communicating class of M∆(s, t),

24

then for any pair of discrepancy vertices vi, vj , j−i must be larger than ∆; in particular,
under our assumption that ∆ = 2 we always have j − i > 2.

Lemma 3.3.2. Let vi, vj be discrepancy vertices in some walk P = v1v2 . . . vn. Then:

1. There is no vertex v in the sub-walk vi+1vi+2 . . . vj−1 such that d(vi, v)+d(v, vj) =
d(vi, vj). (That is, no vertex between vi and vj in P belongs on a shortest path
between them, or is equal to one of them).

2. j − i ≤ d(vi, vj) + 2

Proof For proof of (1), we note that had there been such a vertex, say vt ∈ P , then either
vi, vt or vt, vj would’ve been discrepancy vertices instead of vi, vj since the difference of
indexes is smaller.

For (2), assume that j − i > d(vi, vj) + 2. From this we have: j − (i + 1) >

d(vi, vj) + 1 ≥ d(vi+1, vj), thus vi+1, vj are discrepancy vertices - a contradiction to the
minimality property of discrepancy vertices, since j − (i + 1) < j − i. ■

3.3.1 Pseudo-modular Graphs

Figure 3.4 Pseudo-modular graphs.

’’

’ ’

’ ’ ’

’

’ ’

’ ’ ’ ’

’

’

’

’

’

’

’ 1

2 3

4

5

6

7

8

9 1 1

1

1 2

3

4

56

7

8

9

0
1

2

1
4

1

76

8 1

It is known that chain pursuit in the continuous Euclidean plane converges to the
shortest path (see [Bru93]). One of the primary reasons for this is that the plane has
no holes–it is simply connected. In a simply connected subspace of the plane, any path
can be “optimized” into a shortest path by making small local deformations to it, as
these deformations are never prevented by the undue presence of holes. When working
with graphs, we can capture the notion of making small local changes to pursuit walks

25

via the ∆-deformations (and this led to propositions 3.2.8 and 3.2.9), but capturing
the notion of “holes” in the right way is trickier, leading us to consider properties that
are more indirect. One idea is to consider properties of convex shapes, as any convex
shape is in particular holeless.

Helly’s Theorem is a theorem about intersections of convex shapes, stated as follows:
let X1 . . . Xn be a collection of n convex, finite subsets of Rd. If the intersection of
every d + 1 of these sets is nonempty, then the collection has a nonempty intersection
(see [DGK63] and Chapter 1 of [Mat02] for additional background). Helly’s theorem
motivates one of the possible, equivalent definitions of pseudo-modular graphs:

Definition 3.3.3. A graph G is called pseudo-modular, or “3-Helly”, if any three pair-
wise intersecting disks of G have a nonempty intersection. (A disk of radius r about
the vertex v is the set of all vertices of distance ≤ r from v)

Pseudo-modular graphs were introduced in [BM86] as a generalization of several
important classes of graphs in metric graph theory, such as the so-called “median”,
“modular” and “distance-hereditary” graphs (see [BC08] for a general survey). It is
not hard to confirm that the grid graph is pseudo-modular, and so are many of its
sub-graphs and many grid-like graphs.

To begin we wish to prove the following:

Proposition 3.3.4. Pseudo-modular graphs are convergent.

Proof By 3.2.13 it suffices to show that G is convergent for delay time ∆ = 2 (indeed,
for all of our proofs from this point onwards, we will implicitly assume that ∆ = 2
unless stated otherwise). We show that any walk can be 2-deformed to a shortest path
via 2-deformations.

The proof is by induction on the number of vertices in the walk, denoted by n.
For the induction base, it is simple to see that any walk of length 3 or less (i.e. with
3 vertices or less) from s to t can be 2-deformed to a shortest path (it is either the
shortest path, or a direct link exists from s to t, and then 2-deformation clearly leads
to it!). Thus the statement holds for n ≤ 3.

Now assume that all walks of length n − 1 can be 2-deformed to an optimal path.
Let P = v1 . . . vn be a walk with n vertices. We will show P can be 2-deformed to a
shortest path.

First, as the sub-walk v2 . . . vn is of length n− 1, we may 2-deform it to a shortest
path. Assume wlog that it already is. Then either P is a shortest path (and we are
done), or v1 and vq, for some q > 1, are discrepancy vertices. If q ̸= n then we
can 2-deform the sub-walk from v1 to vq into a shortest path (due to the inductive
assumption), which shortens P , and reduces us to a previous case of the induction. So
we simply need to handle the case where v1 and vn are discrepancy vertices.

If v1 = vn (i.e. P is a “loop” around v1) then it follows that |P |= 3, so we are
reduced to an earlier case of the induction. Otherwise, write d = d(v1, vn). Consider

26

Figure 3.5 The constructions in the proof of Proposition 3.3.4

vi

v2 v3

vn

u d− 1
(a)

v1

v2 v3

vn

u

x
d− 1

(b)

the three disks D(v1, 1), D(vn, d − 1), D(v3, 1), where D(v, r) is the disk of radius r

about vertex v.
We show that the three disks intersect pairwise:

1. D(v1, 1) and D(v3, 1) intersect at v2.

2. D(v1, 1) and D(vn, d− 1) intersect at a vertex u that lies along the shortest path
from v1 to vn.

3. By Lemma 3.3.2, 2 we have that n− 1 ≤ d + 2, and therefore d(v4, vn) ≤ n− 4 ≤
d− 1. Hence D(v3, 1) and D(vn, d− 1) intersect at v4.

Since G is pseudo-modular, we learn from this that the three disks have a non-empty
intersection. Thus, there exists a vertex x for which (i) d(v1, x) ≤ 1, (ii) d(x, v3) ≤ 1,
and (iii) d(x, vn) ≤ d−1,. It follows from (i) and (ii) that can 2-deform v1v2v3 to v1xv3.
Then, by the inductive assumption, we can 2-deform the sub-walk x . . . vn to a shortest
path from x to vn. Since by (iii), x already lies on a shortest path from v1 to vn, this
turns P into a shortest path from v1 to vn as desired. ■

We prove next that every pseudomodular graph is stable.

Proposition 3.3.5. Pseudo-modular graphs are stable.

For shorthand, a “closed communicating class between s and t” refers to a closed
communicating class of the the Markov chainM defined over the walks from s to t in
G (∆ = 2).

Proof We want to show that there is a unique closed communicating class for every s,
t.

Assume for contradiction that G is not stable. Then there are two vertices s, t such
that there are at least two distinct closed communicating classes from s to t (i.e. of
the Markov chain M2(s, t)). Let C1 and C2 be two such classes. Note that C1 and C2

contain only shortest paths from s to t, as shown in Proposition 3.3.4.
The proof proceeds by induction on the distance between s and t, d(s, t). For the

base case, if d(s, t) ≤ 2 then there clearly must be just one closed communicating class
between s and t, a contradiction to C1 and C2 being distinct.

27

To proceed, assume that the statement holds for distances ≤ n − 1, and consider
two vertices s and t such that d(s, t) = n.

Let P1 = v1v2 . . . vn+1 ∈ C1 and P2 = u1u2 . . . un+1 ∈ C2, with s = v1 = u1 and
t = vn+1 = un+1, be two shortest paths from s to t. Consider the disksD(u2, 1), D(v2, 1)
and D(t, n− 2). We have that D(t, n− 2) intersects D(u2, 1) and D(v2, 1) respectively
at u3 and v3. Furthermore s ∈ D(u2, 1) ∩ D(v2, 1). Thus there must be a vertex x in
the intersection of all disks. For this vertex we have: d(x, v2) = 1, d(x, u2) = 1 and
d(x, t) = n− 2. Since d(v2, t) = d(u2, t) = n− 1, we have that x lies on a shortest path
from both u2 and v2, to t. Let Px = x . . . t be some fixed shortest path from x to t. By
the inductive assumption we can 2-deform the sub-walks v2 . . . vn of P1 and u2 . . . un of
P2 to the paths v2Px and u2Px respectively. Then we may deform the sub-walk v1v2x

(of the path v1v2Px) to v1u2x, thus deforming the two paths into the same path. This
contradicts that C1 and C2 are distinct, so we are done. ■

An example of a graph which is stable but not pseudo-modular is seen in Figure
3.6.

Figure 3.6 Stable, non-pseudo-modular graph

1

2

3

4

56

3.3.2 Graph Products

Graph products are a rich topic of study as well as an effective method of creating new
topologies from old (see [HIK16; IK00] for an overview). In this section we concern
ourselves with two kinds of graph product operations, and show that they preserve
graph convergence, and graph stability.

Figure 3.7 Graph products of P5 with itself

12

3 4

5 6 7

8

9 0

1 2 3 4

5

6

7

8

9

0

1

2 3

4 5
(a) P5□P5

12

3 4

5 6 7

8

9 0

1 2 3 4

5

6

7

8

9

0

1

2 3

4 5
(b) P5 ⊠ P5

28

Definition 3.3.6 (Cartesian product). The Cartesian product of two graphs G = (V1, E1)
and H = (V2, E2), written G□H, is defined to be the graph whose vertices are of
the form u = (x, y) where x ∈ G, y ∈ H, and where there is an edge between
(x1, y1)→ (x2, y2) iff x1 = x2 and y1y2 ∈ E2, or y1 = y2 and x1x2 ∈ E1.

Definition 3.3.7 (Strong product). The strong product of two graphs G = (V1, E1)
and H = (V2, E2), written G⊠H, is defined to be the graph whose vertices are of the
form u = (x, y) where x ∈ G, y ∈ H, and where there is an edge between (x1, y1) →
(x2, y2) iff x1 = x2 and y1y2 ∈ E2, or y1 = y2 and x1x2 ∈ E1, or x1x2 ∈ E1 and
y1y2 ∈ E2.

Any vertex v of a graph product of G1 and G2 can be described as a pair (x, y).
The projection of v onto G1 is defined to be x, and its projection onto G2 is defined
to be y. The projection of a walk P onto Gi is the walk over Gi that consists of the
projections of the vertices of P onto Gi in order. We will have the notation di(v, u)
refer to the distance between the projections of the vertices v, u onto Gi. We note that
the distance between two vertices v and u over G1□G2 is simply the “taxicab metric”
distance [Kra12]; dG1□G2(u, v) = d1(v, u) + d2(v, u). In comparison, it follows from the
definition of a strong product that dG1⊠G2(v, u) = max(d1(v, u), d2(v, u)).

Let Pn be the path graph on n vertices. Then Pn□Pn is the regular n×n grid and
Pn⊠Pn is the grid with diagonals, see Figure 3.7. Therefore this section offers another,
different generalization of the known results regarding grid graphs.

Cartesian products

Proposition 3.3.8. G1□G2 is convergent iff G1 and G2 are convergent.

Proof In one direction, assume G1□G2 is convergent and let, wlog, P = v1v2 . . . vn be
a walk in G1. Let u ∈ G2 be an arbitrary vertex. The walk P ′ whose ith vertex is
v′i = (vi, u), can be projected onto G1 and its projection is P . Since P ′ is 2-deformable
to a shortest path from (v1, u) to (vn, u), it follows from this that P is 2-deformable
to a shortest path from v1 to vn (note that any valid 2-deformation of P ′ over G1□G2

changes only the G1 coordinate component of the vertices, since 2-deformations never
lengthen a path and changing the fixed G2 component u will do so).

In the other direction, assume G1 and G2 are convergent. Let P = v1 . . . vn be a
walk in G1□G2. We will show it is 2-deformable to a shortest path from v1 to vn.

Call an edge in G1□G2 an x-change if it affects the G1 coordinate component and
leaves G2 fixed, else call it a y-change. Now let u1u2u3 be some walk in G1□G2. By
the definition of a Cartesian product, if u1u2 is a y-change and u2u3 is an x-change, we
can 2-deform u1u2u3 into u1u′2u3 such that u1u′2 is an x-change and u′2u3 is a y-change.
Vice-versa, this is also true. We will call such 2-deformations swaps. (See Figure 3.8
for an illustration).

29

Figure 3.8 The constructions in the proof of Proposition 3.3.8.

u1 u′2

u2 u3

y-
ch
an

ge
x-change

y-
ch
an

ge
x-change

(a) A single swap.

12

3 4

5 6 7

8

9 0

1 2 3 4

5

6

7

8

9

0

1

2 3

4 5
x-changes

y-changes

(b) 2-deforming the directed path such that all
the x-changes occur first

The idea is this: take the walk P and perform swaps on its vertices until all x-
changes are consecutive, and all y-changes are consecutive. This results in a walk P ′

that can be divided into two sub-walks: P ′1 = u1 . . . uk and P ′2 = uk . . . un, such that
the vertices in P ′1 have their G2-component held constant, and the vertices in P ′2 have
their G1-component held constant. We can then use the convergence of G1 and G2 to
2-deform these two components to shortest paths, P ∗1 and P ∗2 . It is simple to see from
the definition of a Cartesian product that P ∗1 P ∗2 must be a shortest path from u1 to
un; so we are done. ■

Proposition 3.3.9. G1□G2 is stable iff G1 and G2 are stable.

Proof The direction where G1□G2 is stable is similar to its counterpart in Proposition
3.3.8. We let P = v1v2 . . . vn be a walk in G1 and create a walk P ′ (as in 3.3.8) whose
projection onto G1 is P . Since from stability it follows that P ′ is 2-deformable to any
shortest path from (v1, u) to (vn, u), it follows from this that P is 2-deformable to any
shortest path from v1 to vn.

In the other direction, assume G1 and G2 are stable. Let P = (x1, y1)→ (xn, yn) be
any shortest path in G1□G2. We show that P can always be deformed into a specific
shortest path Q, thus showing that G1□G2 is stable (this shows stability via proposition
3.2.9). Let vi = (xi, yi) and let Qx be a fixed, arbitrary optimal path from x1 → xn.
Let Qy be a fixed, arbitrary optimal path from y1 → yn. Then Q is defined to be a
shortest path of the form (x1, y1)(x2, y1) . . . (xn, y1)(xn, y2) . . . (xn, yn) (that is, first we
go through the path Qx, holding the y-coordinate fixed, and then through Qy, holding
the x-coordinate fixed).

To deform P to Q, we perform swaps on P as in 3.3.8 to move all the x-changes
to the beginning of the path, y-changes to the end, to get a path P ′ = P ′1P ′2. Then
similarly to 3.3.8 we can use the stability of G1 and G2 to deform the front and end to
paths P ′1,P ′2 to Qx and Qy respectively. Thus we deform P to Q as desired. ■

30

Strong products

For the rest of this section, by d(v, u) we mean the usual distance from v to u over
G1 ⊠G2. The fact that d(v, u) = max(d1(v, u), d2(v, u)) is important and will be used
extensively, sometimes implicitly, in the arguments below.

An important thing to note about walks in G1⊠G2 is that their x and y components
can be 2-deformed independently, so long as the deformation doesn’t shorten the walk.
More explicitly, consider the walk P = v1 . . . vn and denote vi = (xi, yi). Note that if
xixi+1xi+2 is 2-deformable to xix

′xi+2 then vivi+1vi+2 = (xi, yi)(xi+1, yi+1)(xi+2, yi+2)
is 2-deformable to (xi, yi)(x′, yi+1), (xi+2, yi+2). Thus we have changed the projection
of P onto G1 without affecting the projection onto G2. Equivalently, we can change
the projection onto G2 without changing the projection onto G1. We will call ∆-
deformations that leave either the projection to G1 or to G2 unaffected independent
deformations.

We prove next the following property of strong products on graphs:

Proposition 3.3.10. G1 ⊠G2 is convergent iff G1 and G2 are convergent.

To aid us we will employ a useful definition.

Definition 3.3.11. Let P = v1 . . . vn be some walk of G1 ⊠G2. We define the x-score
of vi, 1 < i < n, to be d1(vi−1, vi+1)−d1(vi, vi+1), and the y-score to be d2(vi−1, vi+1)−
d2(vi, vi+1).

Note that the x-score (y-score) receive values only in -1, 0, or 1. The x-score (y-
score) of a vertex vi of the walk P = v1 . . . vn is a measure of how much “closer” vi

brings us to vi+1 when projected onto Gi, relative to vi−1. If it is positive, then the
projection of vi is closer to vi+1 than was that of vi−1.

We start with an observation:

Lemma 3.3.12. Let C be a closed communicating class of G1⊠G2 (i.e., of the Markov
chain M2(s, t) for some choice of s and t). Then for any walk P = v1 . . . vn ∈ C:

1. If d1(v1, v3) = 2 and d2(v1, v3) ≤ 1, the x-score of every vi (1 < i < n) is 1

2. If d2(v1, v3) = 2 and d1(v1, v3) ≤ 1, the y-score of every vi (1 < i < n) is 1

3. If d2(v1, v3) = 2 and d1(v1, v3) = 2, then either all vi have positive x-score, or all
vi have positive y-score

Since P is ∆-optimal, one of (1), (2) or (3) must hold. Essentially, Lemma 3.3.12
says that one of the projections of a path P ∈ C onto either G1 or G2 must be ∆-optimal
(in G1 or G2 respectively), since this is implied by either all of the x-scores or all of the
y-scores being positive. The proof idea is to show that whenever this is not the case,
P can be “stretched” along either the G1 or G2 axes (via ∆-deformation) to a path
that is not ∆-optimal, contradicting that C is a closed communicating class and hence
contains only ∆-optimal paths.

31

Proof For proof of (1), suppose that d1(v1, v3) = 2 and d2(v1, v3) ≤ 1. The proof is
by contradiction: Let vk be the first vertex with non-positive x-score (we assume for
contradiction that it exists), meaning that d1(vk−1, vk+1)− d1(vk, vk+1) ≤ 0, or (alter-
natively written) d1(vk−1, vk+1) ≤ d1(vk, vk+1). Recall the definition of 2-optimality,
and that every walk in a closed communicating class is 2-optimal. Note that P is 2-
optimal, thus, for all i, d(vi, vi+2) = 2 and d(vi, vi+1) = 1. In particular we have that
d(vk, vk+1) = 1, which implies that d1(vk−1, vk+1) ≤ d1(vk, vk+1) ≤ 1. Since d(u, v) is
the maximum of d1(u, v) and d2(u, v), and d(vk−1, vk+1) = 2, we must then have that
d2(vk−1, vk+1) = 2.

Denote vi = (xi, yi). Using independent deformations, we can 2-deform the vertices
of P to have maximized y-scores, as follows: whenever d(yi, yi+2) ≥ 1, we 2-deform
yiyi+1yi+2 to yiy

′yi+2 such that d(y′, yi+2) = d(yi, yi+2) − 1 (this is always possible
since when yi and yi+2 are not the same vertex there is always a vertex connected to
both of them that gets closer to yi+2). We do this without affecting the projection of
P on G1 (and so the x-scores remain unchanged), creating a walk P ′ = v1v′2 . . . v′n−1vn.
Since d2(v1, v3) ≤ 1, we then have that d2(v′i, v′i+2) ≤ 1 for all i.

Recalling that vk has non-positive x-score (meaning that so does v′k), we have that
d1(v′k−1, v′k+1) ≤ 1 but now also d2(v′k−1, v′k+1) ≤ 1, and so d(v′k−1, v′k+1) ≤ 1, a contra-
diction to the 2-optimality of all walks in C and the closure of C under 2-deformations.

The proof of (2) is the same.
For proof of (3), again by contradiction, let vk be the first vertex that doesn’t have

both x- and y-scores positive. Suppose wlog that the y-score is non-positive, meaning
we must have d2(vk−1, vk+1) ≤ d2(vk, vk+1) ≤ 1. Due to 2-optimality we must then
have d1(vk−1, vk+1) = 2, so we can apply the same argument as (1) to the subwalk
vk−1 . . . vn (that is, our new ’v1’ and ’v3’ are vk−1 and vk+1), to get that the vertices
past vk have positive x-score as well. ■

We can now move on to the proof of 3.3.10.

Proof The case where G1 ⊠ G2 is convergent uses the same idea as propositions 3.3.8
and 3.3.9. Let P = v1v2 . . . vn be a walk in G1 and create a walk P ′ over G1 ⊠ G2

(as in 3.3.8) whose projection onto G1 is P and whose y-coordinate is fixed. We may
deform P ′ into a shortest path, since G1⊠G2 is convergent. Any atomic 2-deformation
of P ′ that changes its projection onto G1 can be translated into a 2-deformation of P

by looking only at the changes to the x-coordinates. This implies that P is deformable
to a shortest path in G1.

In the other direction, suppose G1 and G2 are convergent. Let C be a closed
communicating class of G1 ⊠G2 and let P = v1 . . . vn be a walk in C. We will show P

is a shortest path from v1 to vn.
Denote vi = (xi, yi). Assume P is not optimal. Then n − 1 > d(v1, vn) ≥

max(d1(v1, vn), d2(v1, vn)), and thus neither of the walks X = x1x2 . . . xn and Y =
y1y2 . . . yn is optimal. Since G1 and G2 are convergent, we can 2-deform these paths

32

to optimality. Hence, for both X and Y , there is a sequence of atomic 2-deformations
that eventually results in a walk of length n−1 (i.e. a length one less than their current
length). The penultimate element of this sequence will be a walk u1u2 . . . un such that
d(uk−1, uk+1) ≤ 1 for some k, i.e., a walk that is not 2-optimal (since we cannot delete
any vertices from a 2-optimal walk via a single atomic 2-deformation).

Let X ′ = x′1x′2 . . . x′n be a 2-deformation of X such that for some k, d(x′k−1, x′k+1) ≤
1. There must be such a 2-deformation in light of the above. In X’, 2-deform the
sub-walk x′k−1x′kx′k+1 to x′k−1x′k−1x′k+1, calling the new walk X∗. Note that X∗ has a
vertex with non-positive (zero) x-score.

Let Y ′ be a 2-deformation of Y such that for some j, d(y′j−1, y′j+1) ≤ 1. We again
2-deform the sub-walk y′j−1y′jy′j+1 to y′j−1y′j−1y′j+1, resulting in a walk Y ∗ that has a
vertex with non-positive (zero) y-score.

We independently deform the x- and y- components of P into X∗ and Y ∗ respec-
tively. Call the new walk P ∗.

According to Lemma 3.3.12, P ∗ either has all x-scores positive, or all y-scores pos-
itive. But we know this to be false due to the way we constructed X∗ and Y ∗, a
contradiction to Lemma 3.3.12. ■

Proposition 3.3.13. G1 ⊠G2 is stable iff G1 and G2 are stable.

Proof The direction where G1 ⊠G2 is stable uses precisely the same idea as in Propo-
sitions 3.3.8, 3.3.9, and 3.3.10, and is omitted.

Suppose G1 and G2 are stable. We will show G1 ⊠ G2 is stable. To this end we
show that every shortest path from s = (sx, sy) to t = (tx, ty) is deformable to a fixed
path Q (see Proposition 3.2.9). We separate the proof into cases.

(1) Assume d1(s, t) = d2(s, t). Set Q = u1 . . . un to be some arbitrary optimal path
from s to t, and set Qx, Qy to be the projections over G1 and G2 respectively.

Let P = v1 . . . vn be a path from s = v1 to t = vn. We can assume it is an optimal
path due to convergence. Denote by X = x1 . . . xn, Y = y1 . . . yn the projections of P

onto G1 and G2. Since d1(v1, vn) = d2(v1, vn), we have that X and Y are both optimal.
Thanks to the stability of G1 and G2, we can independently 2-deform X to Qx and Y

to Qy. So any P from s to t is deformable to Q and we are done.
(2) Assume d1(s, t) ̸= d2(s, t). wlog we will assume that d1(s, t) > d2(s, t). Write

n2 = d2(s, t) + 1 for shorthand. Define Q similar to before, its projections over G1 and
G2 being as follows: first, Qx is some arbitrary optimal path from sx to tx. Then, the
first n2 vertices of Qy are some optimal path from sy to ty and the rest are ty repeated
(Qy =

n2
sy . . . ty ty . . . ty).

As before let P = v1 . . . vn be any shortest path from s to t, with the projections X

and Y defined as in the previous case. We can deform X to Qx like before. Deforming
Y to Qy is more delicate.

First we show that given a subwalk Y (j, k) = yj . . . yk such that d2(yj , yk) < k − j

33

(that is, the subwalk is sub-optimal), it is possible to deform Y (j, k) such that both
the kth and the (k − 1)th vertices will be equal to yk.

Since Y (j, k) is sub-optimal and G2 is stable we can 2-deform Y (j, k) to a walk
Y (j, k)′ = yjy′j+1 . . . y′k−1yk such that d2(y′t, y′t+2) = 1 for some t (the same idea was
used in Proposition 3.3.10).

We perform a sequence of 2-deformations on Y (j, k)′, explained as follows: first we
look at the sub-walk of length 3 y′ty

′
t+1y′t+2 and 2-deform it to y′ty

′
t+2y′t+2 (this is possible

by the above). We then look at the sub-walk y′t+2y′t+2y′t+3 that starts 1 vertex after
y′t (which was y′t+1y′t+2y′t+3 before this deformation), and 2-deform it to y′t+2y′t+3y′t+3.
We continue moving “rightward” in this manner, at every step taking a sub-walk of the
form y′t+by

′
t+by

′
t+b+1 and 2-deforming it to y′t+by

′
t+b+1y′t+b+1:

yj . . . y′ty′t+1y′t+2 . . . y′k−1yk
2−def.⇝ yj . . . y′ty′t+2y′t+2 . . . yk

yj . . . y′ty′t+2y′t+2y′t+3 . . . yk ⇝ yj . . . y′ty′t+2y′t+3y′t+3 . . . yk

...

yj . . . y′k−1y′k−1y′k ⇝ yj . . . y′k−1ykyk

This eventually gives the desired deformation: a walk that ends with ykyk.
Let o ≥ n2 be the earliest index of the vertex ty in the walk Y . We deform Y (1, o)

a finite number of times using the above idea, to duplicate ty to the index n2, resulting
in a walk Y ′. The last (nth) vertex of Y ′ is ty, and so is the n2th vertex, so the subwalk
Y ′(n2, n) is sub-optimal. Thus we may repeatedly apply the above 2-deformations to
duplicate ty across the rest of the walk. This leaves us with a 2-deformation of Y , Y ′′,
such that the first n2 vertices are an optimal path from sy to ty, and the rest of the
vertices are ty. Finally we 2-deform the first n2 vertices (using the stability of G2) to
equal those of Qy, and we are done. ■

An interesting corollary of the above propositions is the following:

Corollary 3.1. G1 ⊠G2 is stable (resp., convergent) iff G1□G2 is stable (resp., con-
vergent)

In other words, for questions of stability and convergence of probabilistic pur-
suit, there is no difference between the topology induced by the “taxicab” distance
d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2) and the topology induced by the distance
d((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)).

3.3.3 Planar and Chordal Graphs

It is surprisingly difficult to pinpoint the effect of the underlying graph being planar
on chain pursuit. Certainly, not every planar graph is convergent - a simple counterex-
ample is a cycle of length 5 and above. But one might expect that planar graphs with

34

high connectivity, or other good “regularity” properties (for example, low complexity of
the planar graph’s faces), would be convergent, if not stable. The counterexamples in
Figure 3.9 highlight the difficulty of pinpointing such properties. Figure 3.9, (a) shows
a maximal planar graph that is not convergent. Figure 3.9, (b) shows a matchstick
graph (a planar graph that can be drawn on the plane with all edge lengths being 1)
whose faces are all triangular or square. The dashed edges show a suboptimal recurrent
path from s to t; the double lines show the optimal path.

Figure 3.9 Some planar, non-convergent graphs.

1 3

5 6 7

8

9
1

s t

1

(a)

1 2
3 45

6
7 8 9

1
1

2

3 4 1 1

s

t

̸ 60°

(b)

An outerplanar graph is a graph that has a planar drawing for which all vertices
belong to the outer face of the drawing. A maximal outerplanar graph is an outerplanar
graph to which we can add no edges. A positive result for planar graphs is the following:

Proposition 3.3.14. Every maximal outerplanar graph is convergent.

In fact, this proposition stems from a more general observation. A fairly well-known
class of graphs are the chordal graphs (see [Gol04b; Dir61] for background). Chordal
graphs can be defined in two equivalent ways.

Definition 3.3.15. A simplicial vertex is a vertex whose neighbors form a complete
graph [Gol04b].

Definition 3.3.16. The following are equivalent characterizations of chordal graphs:

1. All cycles of four or more vertices of G have a chord (an edge that is not part of
the cycle but connects two vertices of the cycle).

2. G has a perfect elimination ordering: an ordering of the vertices of the graph such
that, for each vertex v, v is a simplicial vertex of the graph induced by v and the
vertices that occur after v in the order.

Definition (1) hints at a “regularity” property of the kind we are looking for that is
possessed by chordal graphs.

It is well-known and simple to prove that every maximal outerplanar graph is
chordal. To see this, note that the regions in the interior of a maximal outerplanar

35

graph form a tree (if there was a cycle, it would necessarily surround some vertex of
the graph, which contradicts outerplanarity). As such any region of the outerplanar
graph corresponding to a leaf of that tree must have a vertex of degree 2. It is simple to
see that this vertex is simplicial, and that after its removal the graph remains maximal
outerplanar. Thus we found a perfect elimination ordering, and every such graph must
be chordal. (See the famous “ear clipping” algorithm [EET93]).

Thus, proposition 3.3.14 is a consequence of the following:

Proposition 3.3.17. Chordal graphs are convergent.

Proof The proof is by induction. We assume every chordal graph of size n − 1 is
convergent, and prove that this yields the result for graphs of size n. In the base case,
it is simple to verify that any graph (chordal or not) with n ≤ 4 vertices is convergent.

Let G be a chordal graph of size n and let v be a simplicial vertex of G. Consider
a walk P = u1 . . . um in G. We show that P can be 2-deformed into a shortest path.
We separate our proof into three cases:

(1) If v does not occur as a vertex in P , then we can 2-deform P into a shortest
path just as we would working in G− v (which is chordal and therefore convergent by
our inductive assumption). (Note that since v is simplicial, it does not occur in any
shortest path from u1 to um).

(2) If v occurs in P as a vertex ui, 1 < i < m, then since it is simplicial we have
d(ui−1, ui+1) = 1, thus we can 2-deform ui−1uiui+1 to ui−1ui+1 and remove v from P .
Thus we are reduced to either case (1) or case (3).

(3) Either u1 = v or um = v and v occurs nowhere else in P . Here we require
another separation to cases:

In the first case, both u1 = v and um = v. Using the convergence of G − v we
can 2-deform u2 . . . um−1 to u2um−1 (since u2, um−1 are neighbors of v and there-
fore d(u2, um−1) ≤ 1). This leaves us with the walk P ′ = u1u2um−1um, and we
have d(u1, um−1) = 1, so we may remove u2 from it via 2-deformation. Finally since
d(u1, um) = 0 we can remove um−1, leaving us with P ′′ = u1um, an optimal path.

In the other case, we assume wlog that only u1 = v (the case where um = v is
symmetrical). By the inductive assumption, and since G − v is chordal, we can 2-
deform the subwalk u2u3 . . . um to a shortest path. We will assume wlog that it already
is. Since ∆ = 2, we can assume that |P |= m > 3, otherwise the proof is trivial.

Suppose that in spite of u2u3 → . . . um being optimal, the walk P is not a shortest
path from u1 to um. Recall the definition of discrepancy vertices. Since it is not
optimal, P must contain a pair of discrepancy vertices. Since the subwalk u2 . . . um is
optimal, this must be a pair of the form u1, uk for some k (as optimal subwalks contain
no discrepancy vertices).

For simplicity, will assume that k = m, and deal with the case where k ̸= m at the
end. That is, we assume that u1 and um are the discrepancy vertices.

36

Let P ∗ = v1 . . . vl be a shortest path from v1 = u1 = v to vl = um. Since v is a
simplicial vertex and u2 is a neighbor of v, we have that d(u2, um) ≤ d(v, um). Note
that since the sub-walk u2u3 . . . um is optimal, and goes through m− 2 edges, we have
that m− 2 = d(u2, um). In turn this implies that |P ∗|= d(v, um) + 1 ≥ d(u2, um) + 1 =
m− 1 ≥ 3.

Since u1 and um are discrepancy vertices, the paths P ∗ and P contain no shared
vertices except at the endpoints (see Lemma 3.3.2). Thus the vertices of P ∪ P ∗ form
a cycle. Since |P ∗|, |P |≥ 3, this cycle contains both u3 and v3 as vertices.

The subgraph induced by the vertices of the cycle H = P ∪ P ∗ is a sub-graph of
a chordal graph, thus it is chordal. Since v(= u1) is simplicial, the graph H − v is
also chordal. Note that the edge u2v2 exists (since u2 and v2 are neighbors of v), and
is an edge of the cycle v2 . . . vl . . . u2 in H − v. Hence, there must be a cycle in H − v

with minimal number of vertices containing the edge u2v2. This cycle must be of size
3, since H − v is chordal. We note the following facts:

1. This cycle is either of the form u2vqv2 or u2uqv2, for q > 2.

2. If it is of the form u2vqv2, then u1u2vqvq+1 . . . vl is a shortest path from u1 to
vl = um (since u1v2v3 . . . vl is a shortest path and q > 2). This contradicts the
fact that u2 must not belong to such a path (since u1 and um are discrepancy
vertices). Therefore this is an impossibility.

3. If it is of the form u2uqv2, and q > 3, then there is an edge from u2 to uq. This
is a contradiction to the fact that u2u3 . . . um is a shortest path. Therefore, we
must have that q = 3.

Thus we see that this cycle must be precisely the cycle u2u3v2. Therefore, the edge
v2u3 must exist in G.

Figure 3.10 The induced subgraph P ∪ P ∗

1

2

3

4

5

6
v1 (u1)

v2

u2

v3

u3

vl (um)

Since v2u3 exists, we can 2-deform u1u2u3 to u1v2u3, then 2-deform v2u3 . . . um to
a shortest path from v2 to um (using the inductive assumption), deforming P into an
optimal path. Thus we successfully 2-deformed P into an optimal path, and we are
done.

If k ̸= m we first restrict ourselves to looking at the sub-walk u1 . . . uk of P and
apply the argument above to 2-deform it to a shortest path. This has the effect of
shortening P . If P is not a shortest path as a result of this, we can freely re-apply the

37

same argument a finite number of times to deform P to a shortest path. Specifically,
after taking care of v1, vk we look for the next pair of discrepancy vertices and apply
the argument to them, each time shortening the length of P by at least 1. This can
only be done a finite number of times (as P is finite), and at the end of this process we
will have deformed P to a shortest path. ■

Note that in general chordal graphs are not necessarily planar.

Figure 3.11 The top row shows two maximal outerplanar graphs; the bottom row a
non-planar chordal graph

1

2

3

4

5 6

7

8

9

1 1

1

1 2 3

4

567

8

2

27 6

8

5

1

3

1

9

3
4

3.4 The Uniform Stationary Distribution

In the previous sections we discussed stable graphs, graphs for which the pursuit from s

to t converges to a unique distribution over all shortest paths. In other cases, while chain
pursuit always converges to a distribution over some set of walks, this distribution is not
uniquely determined and depends on the initial walk P (A0) as well as the randomness
of each ant’s path choices.

The purpose of this section is to prove a general fact about these distributions;
namely, that probabilistic chain pursuit will always converge to the uniform distribution
over a set of walks in one of its closed communicating classes. When restricting the
discussion to stable graphs, this says that the pursuit will always converge to the
uniform distribution over all shortest paths from s to t.

38

Figure 3.12 A simulation of chain pursuit on different graph environments. Each
vertex is shaded according to the relative frequency at which an agent Ai was located
on it. A corollary of this section is that for a vertex v, this frequency converges to
precisely the number of walks in C (the closed communicating class at which the pursuit
stabilized) that pass through v, divided by |C|. In the graphs pictured, the most
frequented vertices are those closest to the straight line from s to t.

Proposition 3.4.1. Let C be a closed communicating class of M∆(s, t). The unique
stationary distribution of M restricted to C is the uniform distribution.

In particular we have:

Proposition 3.4.2. Let G be a stable graph. Then the unique stationary distribution
of M∆(s, t) (for any choice of ∆) is the uniform distribution over all shortest paths
from s to t.

We note that for the purposes of our proof, unlike the previous sections, we cannot
restrict the parameter ∆ here to the value ‘2’, and our argument must hold for any
value ∆ greater than 1. This is because the transition probabilities ofM∆(s, t) depend
on the choice of ∆.

The technique we will use to prove Proposition 3.4.1 is a generalization of the
statistical exchangeability technique shown in the Preliminaries chapter. To see this,
let us first give a proof of Proposition 3.4.1 assuming G is the n × n grid graph. The
proof of this special case is due to [BMW97].

Proposition 3.4.3. (Special case of Proposition 3.4.1 for grid graphs.) Let G be the
n× n grid graph and let s = (0, 0), t = (n, n). Then the unique stationary distribution
of M∆(s, t) is the uniform distribution over all shortest paths from (0, 0) to (n, n).

39

Proof We will assume that P (A0) is uniformly distributed over all paths in C and show
that the induced distribution of P (A1) is the uniform distribution. This shows that
the uniform distribution is stationary. Since by Proposition 3.3.9 G is stable, we know
it has a unique stationary distribution, completing the proof.

The number of different shortest paths from (0, 0) to (n, n) is S =
(2n

n

)
. The ith

vertex of P (A0) is (x, y) with probability

1
S

(
i

x

)(
2n− i

n− x

)
(3.1)

This is the hypergeometric distribution, which governs the number of white balls
(x) in a sample of i balls from an urn that initially has a white and b black balls. We
can generate a uniformly random path by drawing balls sequentially at random from
this urn. Recalling our pursuit rule, we can obtain the distribution of A1’s path by
considering the following process with two urns called Urn 0 and Urn 1:

Urn 0 initially contains n white and n black balls. At time unit t ≤ 2n a ball is
drawn from Urn 0 uniformly at random and placed inside Urn 1 - this ball represents
the t-th vertex of P (A0). Once ∆ balls are in Urn 1 (i.e., at time t = ∆), at each time
unit we begin also drawing balls uniformly at random from Urn 1, representing the
vertices of P (A1).

The distribution of P (A1) is given by the distribution of the balls drawn from Urn
1. Here is where exchangeability comes in: let us label the balls 1..2n, disregarding their
color, and let Xi equal the ith ball that is drawn from U1. Then P (A1) is determined
by the sequence U = X1, X2 . . . X2n. Note that by symmetry, X1, X2 . . . X2n is an
exchangeable sequence of random variables. Hence U is equally likely to be any of the
2n! possible permutations, implying that P (A1) is uniformly distributed. ■

Our proof of Proposition 3.4.1 will generalize that of Proposition 3.4.3. Let C be
a closed communicating class of M∆(s, t), and consider the Markov chain defined by
deleting every walk not in C fromM. This restricted Markov chain is finite, irreducible
and aperiodic (as every walk taken by an ant has a non-zero probability of immediately
recurring for the next ant) and so has a unique stationary distribution [LPW09]. We
will assume that P (A0) is uniformly distributed over all paths in C and show that the
induced distribution of P (A1) is the uniform distribution. This is equivalent to showing
that the uniform distribution is the unique stationary distribution of the restricted
Markov chain.

Definition 3.4.4. Let X = x1 . . . xn ∈ C be a walk in G. An (i,j)-shuffle of X, written
Si

j(X), is a random variable resulting from the replacement of the sub-walk xi . . . xj of
X with a shortest path from xi to xj chosen uniformly at random from all such paths.
(We define Si

i(X) = X and Si
n+k(X) = Si

n(X) for k ≥ 1).

Consider the pursuit of A0 by the ant A1. The pursuit rule states that A1 moves,
at time i, to a vertex determined by choosing at random one of the shortest paths from

40

A1 to A0 and stepping on the first vertex of that path. As we will see, this is equivalent
to sequentially performing (i, i + ∆)-shuffles of P (A0) starting from i = 1 up to i = n.

We define η(u, v) to be the number of shortest paths from u to v in G, and we
define η(v, v) = 1. In a slight abuse of notation, we will also let η(u, v) be the set of all
such shortest paths, trusting that the intent will be clear from the context. We further
define η(u1u2, v) to be the set of all shortest paths from u1 to v, whose first edge is
u1u2 (i.e. paths with d(u1, v) edges whose first edge is u1u2). We note that η(u1u2, v)
might equal 0 for some choices of u1u2 and v.

For simplicity, we define xn+k = xn for k ≥ 1, in all applications below.
For the next several lemmas, let U = u1 . . . un be an arbitrary, fixed walk in C.

Write pU (X) for the probability Prob[P (A1) = X|P (A0) = U]. We start with the
following lemma:

Lemma 3.4.5. Let X = x1 . . . xn be a walk in C such that pU (X) > 0. Then we have:

pU (X) =
n∏

i=1

η(xixi+1, ui+∆)
η(xi, ui+∆)

Proof In order for A1 to have P (A1) = X, it must, at time i + 1, choose the vertex
xi+1, having already chosen the vertex xi at time i. At this time A0 will be on the
vertex ui+∆, which by ∆-optimality is at distance ∆ from xi. By the pursuit rule, it
follows that moving to the vertex xi+1 happens with probability

η(xixi+1, ui+∆)
η(xi, ui+∆)

The formula follows from multiplication of all these probabilities. ■

We define the following stochastic process: let U1 = S1
1+∆(U), and U i = Si

i+∆(U i−1).
Define p̃U (X) to be the probability that Un will equal X. We will show:

Lemma 3.4.6. For all X ∈ C, pU (X) = p̃U (X).

Proof The ith shuffle permanently determines the (i + 1)th vertex. We have u1 = x1

and un = xn. In order for u2 to be changed into x2 we must have that the second
vertex of S1

1+∆(U) is x2, which by the definition of η happens with probability

η(x1x2, u1+∆)
η(x1, u1+∆)

Inductively, we again arrive at the formula:

p̃U (X) =
n∏

i=1

η(xixi+1, ui+∆)
η(xi, ui+∆)

Which shows that pU (X) = p̃U (X). ■

41

From the proof of 3.4.6 we see that the probability distribution of Un is equivalent
to that of P (A1) (conditioned on P (A0) = U).

Lemma 3.4.7. Let U = u1 . . . un be chosen uniformly at random from the walks in C.
For all X = x1 . . . xn ∈ C, Prob[Un = X] = 1

|C| .

Proof According to our assumption, for any X ∈ C, we have Prob[U = X] = 1
|C| . Then

for any 1 ≤ i < j ≤ i + ∆ we have that

Prob[Si
j(U) = X] = η(ui, uj)

|C|
· 1

η(ui, uj)
= 1
|C|

(The computation relies on the fact that the subwalk from ui to uj in U must be ∆-
deformable to any path in η(ui, uj), thus by closure, the result of any such deformation
must be in C).

We see that the distribution of Si
j(U) is the same as U . Since Un is just a compo-

sition of a finite number of such shuffles, we have that Prob[Un = X] = 1
|C| . ■

The above lemma shows that the distribution of P (A1) is the uniform distribution,
completing the proof of Proposition 3.4.1. ■

3.5 Discussion

We studied the behavior of “ants” that form an idealized “ant trail” through prob-
abilistic chain pursuits over an arbitrary graph environment G. Our pursuit rule is
a natural generalization of the pursuit rule of [BMW97]. Unlike the original simpler
scenario where pursuit was restricted to a grid graph, in general graph environments,
chain pursuit does not necessarily converge to the uniform distribution over all shortest
paths as time tends to infinity. In fact, depending on the random choices of the ants,
chain pursuit may stabilize in several different ways even over the same graph and same
source and destination vertices. We therefore investigated conditions under which con-
vergence and stability do occur. In doing so we extended the results of [BMW97] on
the grid in multiple ways: by showing several classes of graphs that are convergent to
shortest paths and are stable, and by showing that the limiting distribution of walks in
probabilistic pursuit is always uniform. From the graph classes investigated in Section
3.3, two of these, pseudo-modular graphs and graph products, include the special case
where the underlying graph is a grid.

Three immediate extensions of this work can readily be considered. The first is a
classification of stable and convergent graphs with respect to a parameter ∆ greater
than 2, i.e., graphs where convergence to the shortest path (or, additionally, to a unique
stationary distribution) is guaranteed only for choice of ∆ greater than 2. The second
is further investigation of types of planar graphs that are stable or convergent. The
third is an analysis of the computational complexity of the problem of deciding whether
a given graph is convergent or stable.

42

Chapter 4

Natural Algorithms II: A
Locust-inspired Model of
Collective Marching on Rings

Continuing our investigation of natural algorithms, in this chapter we study a model of
collective motion for agents in ringlike environments. The model’s dynamics is inspired
by known laboratory experiments on the dynamics of locust swarms. In these exper-
iments, locusts placed at arbitrary locations and initial orientations on a ring-shaped
arena are observed to eventually all march in the same direction. In this chapter we ask
whether, and how fast, a similar phenomenon occurs in a stochastic swarm of simple
locust-inspired agents. The agents are randomly initiated as marching either clockwise
or counterclockwise on a discretized, wide ring-shaped region, which we subdivide into
k concentric tracks of length n. Collisions cause agents to change their direction of
motion. To avoid this, agents may decide to switch tracks so as to merge with platoons
of agents marching in the same direction of motion as themselves.

We shall mostly follow the works [AAB21; AAB22]. The analysis combines three
techniques from our toolbox: coupling (e.g., in Lemma 4.4.3), potential functions
(Lemma 4.4.15), and stationary distributions (Lemma 4.4.17).

4.1 Introduction

Birds, locusts, human crowds and swarm-robotic systems exhibit interesting collec-
tive motion patterns. The underlying autonomous agent behaviours from which these
patterns emerge have attracted a great deal of academic interest over the last several
decades [APB18; WAYB08; AA15; FK10; GCJT13; AYWB08]. In particular, the for-
mal analysis of models of swarm dynamics has led to varied and deep mathematical
results [Bru93; CGG+08; CVV99; RMB19]. Rigorous mathematical results are nec-
essary for understanding swarms and for designing predictable and provably effective
swarm-robotic systems. However, multi-agent swarms have a uniquely complex and

43

“mesoscopic” nature [Cha18], and relatively few standard techniques for the analysis
of such systems have been established. Consequently, the analysis of new models of
swarm dynamics is important for advancing our understanding of the subject.

In this work, we study the dynamics of “locust-like” agents moving on a discrete
ringlike surface. The model we study is inspired by the following well-documented
experiment [AAA16]: place many locusts on a ringlike arena at random positions and
orientations. They start to move around and bump into the arena’s walls and into
each other, and as they do so, remarkably, over time, they begin to collectively march
in the same direction–either clockwise or counterclockwise (see Figure 4.1). Inspired
by observing these experiments, we asked the following question: what are simple
and reasonable myopic rules of behaviour that might lead to this phenomenon? Our
goal is to study this question from an algorithmic perspective, by considering a swarm
of autonomous and identical discretized mobile agents that act according to a local
algorithm. The precise mechanisms underlying locusts’ behaviours are very complex
and subject to intense ongoing research, e.g. [AA15; AAA16; AOL+14; KSA+21;
KAGA19]. Consequently, as with much of the literature on swarm dynamics [Cha12;
Bru93; AB19a], our goal is not to study an exact mathematical model of locusts in
particular, but to study the kinds of algorithmic local interactions that lead to collective
marching and related phenomena. The resulting model is idealized and simple to
describe, but the patterns of motion that emerge while the locusts progress towards a
“stabilized” state of collective marching are surprisingly complex.

Figure 4.1 Image from locust experiments, courtesy of Amir Ayali. The collective
clockwise marching of locusts in a ring arena is shown. Locusts were initiated at
random positions and orientations in the arena, but converged to clockwise marching
over time.

The starting point for this work is the following postulated “rationalization” of
what a locust-like agent wants to do: it wants to keep moving in the same direction
of motion (clockwise or counterclockwise) for as long as possible. We can therefore
consider a model of locust-like agents that never change their heading unless they
collide, heads-on, with agents marching in the opposite direction, and are forced to do

44

so due to the pressure which is exerted on them. When possible, these agents prefer to
bypass agents that are headed towards them, rather than collide with those agents. This
is done by changing lanes: moving in an orthogonal manner between concentric narrow
tracks which partition the ringlike arena. The formal description of this “rationalized”
model is given in Section 4.3, and will be our subject of study.

Contribution.

We describe and study a stochastic model of locust-inspired agents in a 2D discretized
ringlike arena which is subdivided into k tracks each consisting of n locations. We show
that our agents eventually reach a “local consensus” about the direction of marching,
meaning that all agents on the same track will march in the same direction. We
give asymptotic bounds for the time this takes based on the number of agents and
the physical dimensions of the arena. Due to the idealized deterministic nature of
our model, a global consensus where all locusts walk in the same direction is not
guaranteed, since locusts in different tracks might never meet. However, we show that,
when a small probability of “erratic”, random behaviour is added to the model, such
a global consensus must occur. We verify our claims via simulations and make further
empirical observations that may inspire future investigations into the model.

Despite being simple to describe, analyzing the model proved tricky in several re-
spects. Our analysis strategy is to show that the model oscillates between two phases:
one in which it is “chaotic,” and locusts are moving about without a discernible pattern,
and one in which it is “orderly,” and all locusts are stuck in dense deadlock situations
where collisions are frequent. We derive our asymptotic bounds from studying orderly
phases while bounding the amount of time the locusts can spend in chaotic phases.

Previous works in the literature (e.g., [BSC+06; YEE+09]) have explained collective
marching by appealing to a principle of local averaging, wherein each agent attempts
to average its direction of motion with its neighbors’. It is interesting to note that our
model attains collective marching from nearly the opposite set of assumptions: our
agents’ primary motivation is to avoid changing their direction of motion, and any
change to it is thus the result of an unavoidable conflict. We refer the reader to the
Related Work section below for further discussion.

4.2 Related work

The locust experiments inspiring our work are discussed in [AA15; AAA16; AOL+14;
KSA+21; BSC+06; YEE+09]. The phenomenon was originally studied by Buhl et al.
[BSC+06]. They show that above a certain critical density, a rapid transition occurs
from disordered movements of locust nymphs to highly aligned collective motion. Buhl
et al., and subsequently Yates et al. [YEE+09] hypothesize that a main cause of this
behaviour is the locusts’ tendency to change their direction to align with neighbors

45

within a local interaction range (a common modelling assumption in multi-agent dy-
namics [CVV99]) and that individual behavior does not change in relation to group
density. In this work we show how collective marching might emerge from almost the
opposite set of assumptions: the locust-like agents we describe try to avoid changing
their direction of motion for as long as possible, going as far as actively avoiding lo-
custs that are headed in the opposite direction, but consensus eventually occurs as a
result of unavoidable conflicts where locusts bump into each other. The assumption
that locusts want to maintain their direction of motion is critical for enabling collective
marching in our model, since it characterizes the stable states of the system. Bazazi et
al. [BBH+08] hypothesize collective marching occurs due to a model of cannibalistic
pursuit wherein locusts attempt to pursue locusts in front of them and evade locusts
behind them to bite and avoid being bitten. Our model includes an element of eva-
sion, too, but it is motivated by the locusts’ desire to avoid changing their direction
of motion. All previous models assume local interactions between locusts, i.e., locusts
are only affected by neighboring locusts. Interactions in our model consist of conflicts
between adjacent locusts and track-changes that occur as a result of trying to avoid
said conflicts. Conflicts are by definition local. Track-changing rules can be assumed
either local or global and our analysis applies in both cases.

Notably, in [BSC+06; YEE+09] it is observed that at intermediate densities, swarms
of locusts exhibit periodic directional switching, and at low densities the directions of
motion are random. Our model does not replicate these phenomena–we show that our
locust-like agents converge to local consensus at every density (or global consensus,
assuming noise). Interestingly, we note that if we assume each locust has a small
probability r > 0 of randomly flipping their heading at the beginning of a time step,
such directional switching becomes possible. The probability of directional switching
under such a postulate is inversely proportional to the density, thus likelier at low
and intermediate densities than at high densities. We emphasize, however, that unlike
works such as Buhl et al., replicating all features of locust swarms is not the goal of
this work. Whereas the works we discussed seek to model actual locusts, our work
can be characterized as trying to find a minimalistic locust-inspired set of assumptions
that provably attains collective marching and to study it analytically for the sake of
deepening our understanding of multi-agent systems.

More generally, the mathematical modelling of the collective motion of natural
organisms such as birds, locusts and ants, and the convergence of such systems of
agents to stable formations, has been discussed in numerous works including [CVV99;
GCJT13; RMB19; SA15]. The most relevant to us among these are works within the
field of natural algorithms, which asserts that the behaviour of natural organisms can
be understood using concepts from the theory of robotics and computer science [Cha12;
AB19a; Cha18], such as complexity analysis, look-compute-move phases, and decision-
making based on discrete internal states. Natural algorithms open up interplay between
biology and computer science, allowing us to study nature via the language of algo-

46

rithms and vice-versa, allowing us to translate principles, algorithms and mechanisms
gleaned from nature to the design of systems that are meant to service or interact with
humans, such as autonomous vehicles and warehouse robots.

The central focus of this work regards consensus: do the agents eventually converge
to the same direction of motion, and how long does it take? These questions bear
mathematical and conceptual resemblance to questions in the field of opinion dynamics
[APP12; YOA+13; XWX11]. If the agents’ direction of motion (clockwise or counter-
clockwise) is considered an “opinion,” and the agents’ interactions that cause changes
in the direction of motion are considered social pressure, we can ask how long does it
take for the agents to arrive at a consensus of opinions. Building on this analogy, we
note that when there are no empty locations in the environment, our agent model is
distinctly similar to the voter model on a ring network with two opinions. The voter
model is a classical model in opinion dynamics explored in numerous works (we refer
the reader to the survey [DZK+18]).

The comparison to the voter model breaks when we introduce empty locations and
multiple ringlike tracks, at which point we must take into account the agents’ dynam-
ically changing positions. Unlike the voter model, where only an agent’s static neigh-
borhood can influence its opinion, in our model an agent’s current location determines
which agents can influence it. Several works have explored models of opinion dynamics
in a ring environment where the agents’ physical location is taken into account [CB17;
HMW16]. Our model is distinct from these in several respects: first, in our model,
an agent’s internal state–its direction of motion–plays an active part in the algorithm
that determines which locations an agent may move to. Second, we partition our ring
topology into several narrow rings (“tracks”) that agents may switch between, and
an agent’s decision to switch tracks is influenced by the presence of platoons of agents
moving in its direction in the track that it wants to switch to. In other words, we model
agents that actively attempt to “swarm” together with agents moving in their direction
of motion. We believe our work is unique in that we study, in a single model, both
how an agent’s physical location affects its opinion (via conflicts with nearby agents),
and how an agent’s opinion affects its physical location (via the desire to swarm with
agents of the same opinion or equivalently, evade those of a different opinion).

Protocols for achieving consensus about a value, location or the collective direction
of motion have also been investigated in swarm robotics and distributed algorithms
[BMB17; Cor08; MB18; OFM07]. The purpose of these protocols is typically to be
as efficient as possible in terms of parameters such as time, computational load, and
distance travelled. However, in this work, we are not searching for a protocol that is
designed to efficiently bring about consensus; we are investigating a protocol that is
inspired by natural phenomena and want to see whether it leads to consensus and how
long this process is expected to take.

Broadly speaking, some mathematical similarities may be drawn between our model
and interacting particle systems such as the simple exclusion process, which have been

47

used to understand biological transport and traffic phenomena [CMZ11; AB20]. Such
particle systems have been studied on rings [KK10]. In these discrete models, as in our
model, agents possess a physical dimension, which constrains the locations they might
move to in their environment. These are not typically multi-agent models where agents
have an internal state (such as a persistent direction of motion), but rather models
of particle motion and diffusion, and the research focus is quite different; the main
point of similarity to our model is in the way that a given discrete location can only be
occupied by a single agent, and in the random occurrence of “traffic shocks” wherein
agents line up one after the other and are prevented from moving for a long time.

4.3 Model and definitions

We postulate a locust-inspired model of marching in a wide 2D ringlike arena which is
discretized into k narrow concentric rings each consisting of n locations. Each narrow
concentric ring is called a track. This discretized environment is topologically equivalent
to the surface of a discretized cylinder of height k partitioned into k narrow rings of
length n which are layered on top of each other. For example, the environment of Figure
4.2 corresponds to k = 3, n = 8 (3 tracks of length 8). The coordinate (x, y) refers to
the xth location on the yth track (which can also be seen as the xth location of a ring
of length n wrapped around the cylinder at height y). We define ∀x, (x + n, y) ≡ (x, y).

A swarm of m identical agents, or “locusts,” which we label A1, . . . , Am, are dis-
persed at arbitrary locations move autonomously at discrete time steps t = 0, 1, A
given location (x, y) can contain at most one locust. Each locust Ai is initiated with
either a “clockwise” or “counterclockwise” heading, which determines their present di-
rection of motion. We define b(Ai) = 1 when Ai has clockwise heading, and b(Ai) = −1
when Ai has counterclockwise heading.

The locusts move synchronously at discrete time steps t = 0, 1, At every time
step, locusts try to take a step in their direction of motion: if a locust A is at (x, y), it
will attempt to move to (x + b(A), y). A clockwise movement corresponds to adding 1
to x, and a counterclockwise movement corresponds to subtracting 1. The locusts have
physical dimension, so if the location a locust attempts to move to already contains
another locust at the beginning of the time step, the locust instead stays put. If Ai and
Aj are both attempting to move to the same location, one of them is chosen uniformly
at random to move to the location and the other stays put.

Locusts that are adjacent exert pressure on each other to change their heading: if
Ai has a clockwise heading and Aj has a counterclockwise heading, and they lie on
the coordinates (x, y) and (x + 1, y) respectively, then at the end of the current time
step, one locust (chosen uniformly at random) will flip its heading to the other locust’s
heading1. Such an event is called a conflict between Ai and Aj . A conflict is “won”

1An equivalent way to model these dynamics is as follows: at the start of a conflict, each of the
two locusts uniformly samples a random number ri, rj ∈ (0, 1) called ’pressure’. The locust with lower

48

by the locust that successfully converts the other locust to their heading.
Let A be a locust at (x, y). If the locust A has clockwise heading, then the front of A

is the first locust after A in the clockwise direction, and the back of A is the first locust
in the counterclockwise direction. The reverse is true when A has counterclockwise
heading. Formally, let i > 0 be the smallest positive integer such that (x + b(A)i, y)
contains a locust, and let j > 0 be the smallest positive integer such that (x− b(A)j, y)
contains a locust. The front of A is the locust in (x + b(A)i, y) and the back of A is the
locust in (x − b(A)j, y). The locusts in the front and back of A are denoted A→ and
A← respectively, and are called A’s neighbours; these are the locusts that are directly
in front of and behind A. Note that when a track has two or less locusts, A→ = A←.
When a track has one locust, i = j = n and so A = A→ = A←.

At any given time step, besides moving in the direction of their heading within their
track, a locust A at (x, y) can switch tracks, moving vertically from (x, y) to (x, y + 1)
or (x, y − 1) (unless this would cause it to go above track k or below track 1). Such
vertical movements occur after the horizontal movements of locusts along the tracks,
but on the same time step where those horizontal movements took place. Locusts are
incentivized to move vertically when this enables them to avoid changing their heading
(“inertia”). Specifically, A may move to the location E = (x, y ± 1) at time t when:

1. At the beginning of time t, A and A→ are not adjacent to each other and b(A) ̸=
b(A→).

2. Once A moves to E, the updated A← and A→ in the new track will have heading
b(A).

3. No locust will attempt to move horizontally to E at time t + 1.

Condition (1) states that there is an imminent conflict between A and A→ which
is bound to occur. Condition (2) guarantees that, by changing tracks to avoid this
conflict, A is not immediately advancing towards another collision; A’s new neighbours
will have the same heading as A. Condition (3) guarantees that the location A wants
to move to on the new track is not being contested by another locust already on that
track. Together, these conditions mean that locusts only change tracks if this results
in avoiding collisions and in “swarming” together with other locusts marching in the
same direction of motion. If a locust cannot sense that all three conditions (1), (2) and
(3) are fulfilled, it does not switch tracks.

Besides these conditions, we make no assumptions about when locusts move ver-
tically. In other words, locusts do not always need to change tracks when they are
allowed to by rules (1)-(3); they may do so arbitrarily, say with some probability q or
according to any internal scheduler or algorithm, and we may impose visibility range
constraints on the locusts such that they only switch tracks when they can see that rules

pressure “loses” the conflict and changes its heading (noting that the probability of ri = rj is 0).

49

(1)-(3) are fulfilled. We do not determine in any sense the times when locusts move
between tracks–but only determine the preconditions required for such movements; our
results in the following sections remain true regardless. This makes our results general
in the sense that they hold for many different track-switching “swarming” rules, as long
as those rules do not break the conditions (1)-(3).

Figure 4.2 illustrates one time step of the model, split into horizontal and vertical
movement phases.

Figure 4.2 One step of the locust model with k = 3, n = 8 split into horizontal and
vertical movements. (a) shows the initial configuration at the beginning of the current
time step t, (b) illustrates changes to the configuration after conflicts and horizontal
movements, and (c) is the configuration at the beginning of time t + 1 (or equivalently
the end of time t) after vertical movements. The front and back of the blue locust
are the red and green locusts respectively. The purple locusts conflict with each other.
Since conditions (1)-(3) are fulfilled, the blue locust may switch tracks, and it does so
in the illustration.

In order to slightly simplify our analysis of the model, we assume that every track
has at least 2 locusts at all times, although our results remain true without this as-
sumption.

Although we work in a discrete time model where movement is instantaneous, it
is helpful for the sake of formal analysis to define the beginning of a time step as the
configuration of the swarm at that time step before any locusts moved, and the end
of a time step as the configuration at that time step after all locust movements are
complete. Somewhat idiosyncratically, the end of time t is precisely the beginning of
time t+1 - both terms refer to the same thing. By default and unless stated otherwise,
the words “time step t” refer to the beginning of that time step.

4.4 Stabilization analysis

We will mainly be interested studying the stability of the headings of the locusts over
time. Does the model reach a point where the locusts stabilize and stop changing their
heading? If so, are their headings all identical? How long does it take?

In the case of a single track (k = 1), we shall see that the locusts all eventually

50

stabilize with identical heading, and bound the expected time for this to happen in
terms of m and n. In the multi-track case, we shall see that the locusts stabilize and
agree on a heading locally (i.e., all locusts on the same track eventually have identical
heading and thereafter never change their heading), and bound the expected time to
stabilization in terms of m, n, k. In the multi-track case, we show further that adding
a small probability of “erratic” track-switching behaviour to the model induces global
consensus: all locusts across all tracks eventually have identical heading.

4.4.1 Locusts on narrow ringlike arenas (k = 1)

We start by studying the case k = 1, that is, we study a swarm of m locusts marching
on a single track of length n. Throughout this section, we assume this is the case,
except in Definition 4.4.1, which is also used in later sections.

For the rest of this section, let us call the swarm non-stable at time t if there are two
locusts Ai and Aj such that b(Ai) ̸= b(Aj); otherwise, the swarm is stable. A swarm
which is stable at time t remains stable thereafter. We wish to bound the number of
time steps it takes for the system to become stable, which we denote Tstable. Our goal
is to prove Theorem 4.1, which tells us that the expected time to stabilization grows
quadratically in the number of locusts m, and linearly in the track length n.

Theorem 4.1. For any configuration of m locusts on a ring with a single track,
E[Tstable] ≤ m2 + 2(n − m). This bound is asymptotically tight: there are initial
locust configurations for which E[Tstable] = Ω(m2 + n−m).

Theorem 4.1 tells us that all locusts must have identical bias within finite expected
time. This fact in isolation (without the time bounds in the statement of the theorem) is
relatively straightforward to prove, by noting that the evolution of the locusts’ headings
and locations can be modelled as a finite Markov chain, and the only absorbing classes
in this Markov chain are ones in which all locusts have the same heading (see [GS12]).

Next we define segments: sets of consecutive locusts on the same track which all
have the same heading. This allows us to partition the swarm into segments, such
that every locust belongs to a unique segment (see Figure 4.3). Although this section
focuses on the case of a single track (and claims in this section are made under the
assumption that there is only a single track), the definition is general, and we will use
it in subsequent sections.

Definition 4.4.1. Let A be a locust for which b(A←) ̸= b(A) at time t, and consider
the sequence of locusts B0 = A, Bi+1 = B→i . Let Bq be the first locust in this sequence
for which b(Bq) ̸= b(B0). The set {B0, B1, . . . Bq−1} is called the segment of the
locusts B0, . . . Bq−1 at time t. The locust Bq−1 is called the segment head, and A is
called the segment tail of this segment.

Only locusts which are segment heads at the beginning of a time step can change
their heading by the end of that time step. When the heads of two segments are adjacent

51

Figure 4.3 A locust configuration with n = 8, k = 3. Locusts are colored based based
on the segment they belong to (Definition 4.4.1). There are 8 segments in total.

to each other, the resulting conflict causes one to change its heading, leave its previous
segment, and instead become part of the other segment. If the head of a segment is
also the tail of a segment, the segment is eliminated when it changes heading. Two
segments separated by a segment of opposite heading merge if the opposite-heading
segment is eliminated, which decreases the number of segments by 2. No other action
by a locust can change the segments. Hence, the number of segments and segment tails
can only decrease.

Since our model is stochastic, different sequences of events may occur and result in
different segments. However, by the above argument we can conclude that in any such
sequence of events, there must always exist at least one locust which remains a segment
tail at all times t < Tstable and never changes its heading (since at least one segment
must exist as long as t < Tstable). Arbitrarily denote one such segment tail “AW ”.

Definition 4.4.2. The segment of AW at the beginning of time t is called the winning
segment at time t, and is denoted SW (t). The head of SW (t) is labelled HW (t). For
convenience, if at time t0 the swarm is stable (i.e. t0 ≥ Tstable), then we define SW (t0)
as the set that contains all m locusts.

Lemma 4.4.3. The expected number of time steps t < Tstable in which |SW (t)| changes
is bounded by m2.

Proof Let Cm denote the number of changes to the size of SW (t) that occur before
time Tstable. Note that Tstable is the first time step where |SW (t)|= m. |SW (t)| can
only decrease, by 1 locust at a time, if HW (t) conflicts with another locust and loses.
|SW (t)| can increase in several ways, for example when it merges with other segments.
In particular, |SW (t)| increases by at least 1 whenever HW (t) conflicts with a locust
and wins, which happens with probability at least 1

2 . Hence, whenever SW (t) changes
in size, it is more likely to grow than to shrink. We can bound E[Cm] by comparing
the growth of |SW (t)| to a random walk with absorbing boundaries at 0 and m:

52

Consider a random walk on the integers which starts at |SW (0)|. At any time step
t, the walker takes a step left with probability 1

2 , otherwise it takes a step right. If the
walker reaches either 0 or m, the walk ends. Denote by C∗m the time it takes the walk to
end. Using coupling (cf. [Lin02]), we see that E[Cm] ≤ E[C∗m|the walker never reaches 0],
since per the previous paragraph, |SW (t)| clearly grows at least as fast as the position
of the random walker (note that |SW (t)|> 0 is always true, which is analogous to the
walker never reaching 0).

Let us show how to bound E[C∗m|the walker never reaches 0]. Since the walk is
memoryless, we can think of this quantity as the number of steps the random walker
takes to get to m, assuming it must move right when it is at 0, and assuming the step
count restarts whenever it moves from 0 to 1. If we count the steps without resetting
the count, we get that this is simply the expected number of steps it takes a random
walker walled at 0 to reach position m, which is at most m2 (cf. [AF95]). Hence
E[C∗m|the walker never reaches 0] ≤ m2. ■

Lemma 4.4.4. The expected number of time steps t < Tstable in which |SW (t)| does
not change is bounded by 2(n−m).

Lemma 4.4.4 will require other lemmas, and some new definitions to prove.

Definition 4.4.5. Let A and B be two locusts or two locations which lie on the same
track. The clockwise distance from A to B at time t is the number of clockwise steps
required to get from A’s location to B’s location, and is denoted distc(A, B). The
counterclockwise distance from A to B is denoted distcc(A, B) and equals distc(B, A).

For the rest of this section, let us assume without loss of generality that the winning
segment’s tail AW has clockwise heading. Label the empty locations in the ring at time
t = 0 (i.e., the locations not containing locusts at time t = 0) as E1, E2, . . . En−m,
sorted by their counterclockwise distance to AW at time t = 0, such that E1 minimizes
distcc(Ei, AW), E2 has the second smallest distance, and so on. We will treat these
empty locations as having persistent identities: whenever a locust A moves from its
current location to Ei, we will instead say that A and Ei swapped, and so Ei’s new
location is A’s old location.

We say a location Ei is inside the segment SW (t) at time t if the two locusts which
have the smallest clockwise and counterclockwise distance to Ei respectively are both
in SW (t). Otherwise, we say that Ei is outside SW (t). A locust or location A is said
to be between Ei and Ej , j > i, if distc(Ei, A) < distc(Ei, Ej).

Definition 4.4.6. All empty locations are initially blocked. A location Ei becomes
unblocked at time t + 1 if all empty locations Ej such that j < i are unblocked at
time t, and a locust from SW (t) swapped locations with Ei at time t. Once a location
becomes unblocked, it remains that way forever.

Lemma 4.4.7. There is some time step t∗ ≤ n−m such that:

53

1. Every blocked empty location E is outside SW (t∗) (if any exist)

2. At least t∗ empty locations are unblocked.

Proof If E1 is outside SW (0), then the same must be true for all other empty locations,
so t∗ = 0 and we are done. Otherwise, E1 becomes unblocked at time t = 1. If Ei

becomes unblocked at time t, then at time t, it cannot be adjacent to Ei+1, since the
locust that swapped with Ei in the previous time step is now between Ei and Ei+1.
By definition, there are no empty locations Ej between Ei and Ei+1. Consequently,
if Ei+1 is inside SW (t) at time t, it will swap with a locust of SW (t) at time t, and
become unblocked at time t+1. If Ei+1 is outside the segment at time t, it will become
unblocked at the first time step t′ > t that begins with Ei+1 inside SW (t′). Hence, if
Ei becomes unblocked at time t, then Ei+1 becomes unblocked at time t + 1 or Ei+1 is
outside SW (t + 1) at time t + 1.

Let t∗ be the smallest time where there are no blocked empty locations inside
SW (t∗). By the above, at every time step t ≤ t∗ an empty location becomes unblocked,
hence there are at least t∗ unblocked empty locations at time t∗. Also, since there are
n−m empty locations, this implies t∗ ≤ n−m. ■

Lemma 4.4.8. There is no time t < Tstable where an unblocked location is clockwise-
adjacent to HW (t) (i.e., there is no time t where an unblocked empty location E is
located one step clockwise from HW (t)).

Proof First consider what happens when E1 becomes unblocked: it swaps its location
with a locust in SW (t), and since E1 is the clockwise-closest empty location to AW ,
the entire counterclockwise path from E1 to AW consist only of locusts from SW (t).
Hence E1 will move counterclockwise at every time step, until it swaps with AW . Once
it swaps with AW , E1 will not swap with another locust at all times t < Tstable, since
for that to occur we must have that b(A←W) = b(AW), which is impossible since by
definition AW remains a segment tail until t = Tstable. E1 does not swap with HW (t)
while E1 moves counterclockwise towards AW nor after E1 and AW swap as long as
the swarm is unstable, hence there is no time step t < Tstable when E1 is unblocked and
swaps with HW (t).

Now consider E2. E2 becomes unblocked at least one time step after E1, and there
is at least one locust in SW (t) which is between E1 and E2 at the time step E1 becomes
unblocked (in particular, the locust in SW (t) that swapped with E1 must be between
E1 and E2 at that time). Since E1 subsequently moves towards AW at every time
step until they swap, E2 cannot become adjacent to E1 until they both swap with
AW . Hence the location one step counterclockwise to E2 must always be a locust
until E2 swaps with AW , meaning that similar to E1, E2 also moves counterclockwise
towards AW at every time step after E2 becomes unblocked until they swap locations.
Consequently, just like E1, there is no time step t < Tstable when E2 is unblocked and
swaps with HW (t).

54

More generally, by a straightforward inductive argument, the exact same thing is
true of Ei: once it becomes unblocked, it moves counterclockwise towards AW at every
time step until it swaps with AW . Thus, upon becoming unblocked, Ei does not swap
with HW (t) as long as t < Tstable.

Using Lemmas 4.4.7 and 4.4.8, let us prove Lemma 4.4.4.

Proof If, at the beginning of time step t, HW (t) is adjacent to a locust from a different
segment, then |SW (t)| will change at the end of this time step due to the locusts’
conflict. Hence, to prove Lemma 4.4.4, it suffices to show that out of all the time steps
before time Tstable, HW (t) is not adjacent to the head of a different segment in at most
2(n−m) different steps in expectation.

If all empty locations are unblocked at time n −m, then by Lemma 4.4.8, HW (t)
conflicts with the head of another segment at all times t ≥ n−m. Therefore, |SW (t)|
will change at every time step n−m < t < Tstable, which is what we wanted to prove.

If there is a blocked location at time n−m, then by Lemma 4.4.4, there must be some
time t∗ ≤ n−m where at least t∗ empty locations are unblocked and all blocked empty
locations are outside SW (t∗). Let Ej be the minimal-index blocked location which is
outside SW (t∗) at time t∗. Since there are no blocked empty locations inside SW (t∗),
all locations Ei with i < j are unblocked. Hence, Ej will become unblocked as soon as
it swaps with the head of the winning segment. Since (by the clockwise sorting order of
E1, E2, . . .) Ej+1 cannot swap with the winning segment head before Ej is unblocked,
Ej+1 will also become unblocked after the first time step where it swaps the winning
segment head. The same is true for Ej+2, . . . En−m. Hence, every empty location that
HW (t) swaps with after time t∗ becomes unblocked in the subsequent time step. By
Lemma 4.4.4, the total swaps HW (t) could have made before time Tstable is thus most
t∗ + (n − m − j) ≤ n − m. Whenever an empty location is one step clockwise from
HW (t), they will swap with probability at least 0.5 (the swap is not guaranteed, since
it is possible the location is also adjacent to the head of another segment, and hence
a tiebreaker will occur in regards to which segment head occupies the empty location
in the next time step). Consequently, the expected number of time steps HW (t) is not
adjacent to the head of another segment is bounded by 2(n−m).

The proof of Theorem 4.1 now follows.

Proof Lemma 4.4.4 tells us that before time Tstable, |SW (t)| does not change in at
most 2(n − m) time steps in expectation, whereas Lemma 4.4.3 tells us that the ex-
pected number of changes to |SW (t)| before time Tstable is at most m2. Hence, for any
configuration of m locusts on a ring of track length n, E[Tstable] ≤ m2 + 2(n−m).

Let us now show a locust configuration for which E[Tstable] = Ω(m2 + n), so as
to asymptotically match the upper bound we found. Consider a ring with k = 1, m

divisible by 2, and an initial locust configuration where locusts are found at coordinates
(0, 1), (1, 1), . . . (m/2, 1) with clockwise heading and at (−1, 1), (−2, 1), . . . (−m/2−1, 1)

55

with counterclockwise heading, and the rest of the ring is empty. This is a ring with
exactly two segments, each of size m/2. Since after every conflict, the segment sizes
are offset by 1 in either direction, the expected number of conflicts between the heads
of the segments that is necessary for stabilization is equal to the expected number of
steps a random walk with absorbing boundaries at m/2 and −m/2 takes to end, which
is m2/4 (see [Eps12]). Since the heads of the segments start at distance n −m from
each other, it takes Ω(n−m) steps for them to reach each other. Hence the expected
time for this ring to stabilize is Ω(m2 + n−m).

4.4.2 Locusts on wide ringlike arenas (k > 1)

Let us now investigate the case where m locusts are marching on k > 1 tracks of length
n. The first question we should ask is whether, just as in the case of the k = 1 setting,
there exists some time T where all locusts have identical heading. The answer is “not
necessarily”: consider for example the case k = 2 where on the k = 1 track, all locusts
march clockwise, and on the k = 2 track, all locusts march counterclockwise. According
to the track-switching conditions (Section 4.3), no locust will ever switch tracks in this
configuration, hence the locusts will perpetually have opposing headings. As we shall
prove in this section, swarms stabilize locally–meaning that eventually, all locusts on the
same track have identical heading, but this heading may be different between tracks.

Let us say that the yth track is stable if all locusts whose location is (·, y) have
identical heading. Note that once a track becomes stable, it remains this way forever,
as by the model, the only locusts that may move into the track must have the same
heading as its locusts. Let Tstable be the first time when every all the k tracks are
stable. Our goal will be to prove the following asymptotic bounds on Tstable:

Theorem 4.2. E[Tstable] = O(min(log(k)n2, mn)).

Recalling Definition 4.4.1, each locust in the system belongs to some segment. Each
track has its own segments. Locusts leave and join segments due to conflicts, or when
they pass from their current segment to a track on a different segment. In this section,
we will treat segments as having persistent identities, similar to SW in the previous
section. We introduce the following notation:

Definition 4.4.9. Let S be a segment whose tail is A at some time t0. We define S(t)
to be the segment whose tail is A at the beginning of time t. If A is not a segment
tail at time t, then we will say S(t) = ∅ (this can happen once A changes its heading
or moves to another track, or due to another segment merging with S(t) which might
cause b(A←) to equal b(A), thus making A no longer the tail).

Furthermore, define S1 to be the segment tail of S and Si+1 = S→i .

Let us give a few examples of the notation in Definition 4.4.9. Suppose at time t1

we have some segment S. Then the tail of S is S1, and the head is S|S|. S(t) is the

56

segment whose tail is S1 at time t, hence S(t1) = S. Finally, S(t)|S(t)| is the head of
the segment S(t).

In the k > 1 setting, locusts can frequently move between tracks, which complicates
our study of Tstable. Crucially, however, the number of segments on any individual track
is non-increasing. This is because, first, as shown in the previous section, locusts moving
and conflicting on the same track can never create new segments. Second, by the locust
model, locusts can only move into another track when this places them between two
locusts that already belong to some (clockwise or counterclockwise) segment.

That being said, locusts moving in and out of a given track makes the technique
we used in the previous section unfeasible. In the following definitions of compact
and deadlocked locust sets, our goal is to identify configurations of locusts on a given
track which locusts cannot enter from another track. Such configurations can be studied
locally, focusing only on the track they are in. In the next several lemmas, we will bound
the amount of time that can pass without either the number of segments decreasing,
or all segments entering into deadlock.

Definition 4.4.10. We call a sequence of locusts X1, X2, . . . compact if Xi+1 = X→i
and either:

1. every locust in X has clockwise heading and for every i < |X|, distc(Xi, Xi+1) ≤
2, or

2. every locust in X has counterclockwise heading and for every i < |X|, distcc(Xi, Xi+1) ≤
2.

An unordered set of locusts is called compact if there exists an ordering of all its
locusts that forms a compact sequence.

Definition 4.4.11. Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be two compact
sets, such that the locusts of X have clockwise heading and the locusts of Y have
counterclockwise heading. X and Y are in deadlock if distc(Xj , Yk) = 1. (See Figure
4.4)

A compact set of locusts X is essentially a platoon of locusts all on the same track
which are heading in one direction, and are all jammed together with at most one
empty space between each consecutive pair. As long as X remains compact, no new
locusts can enter the track between any two locusts of X, because the model states that
locusts do not move vertically into empty locations to which a locust is attempting to
move horizontally, and the locusts in a compact set are always attempting to move
horizontally to the empty location in front of them.

Definition 4.4.12. A maximal compact set is a set X such that for any locust A /∈ X,
X ∪A is not compact.

57

Figure 4.4 Two segments in deadlock, colored green and red (Definition 4.4.11).

A straightforward observation is that locusts can only belong to one maximal com-
pact set:

Observation 4.4.13. Let A be a locust. If X and Y are maximal compact sets con-
taining A, then X = Y .

Lemma 4.4.14. Let X and Y be two sets of locusts in deadlock at the beginning of
time t. Then at every subsequent time step, the locusts in X ∪ Y can be separated into
sets X ′ and Y ′ that are in deadlock, or the locusts in X ∪ Y all have identical heading.

Proof Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be compact sets such that
Xi+1 = X→i , Yi+1 = Y→i . It suffices to show that if X and Y are in deadlock at time t,
they will remain that way at time t+1, unless X∪Y ’s locusts all have identical heading.
Let us assume without loss of generality (“w.l.o.g.”) that X has clockwise heading, and
therefore Y has counterclockwise heading. By the definition of deadlock, at time t, Xj

and Yk conflict, and the locust that loses joins the other set. Suppose w.l.o.g. that Xj

is the locust that lost. If |X|= 1, then the locusts all have identical heading, and we
are done. Otherwise, set X ′ = {X1, . . . Xj−1} and Y ′ = {Y1, Y2, . . . Yk, Xj}. Note that
since X and Y are compact at time t, no locust could have moved vertically into the
empty spaces between pairs of locusts in X ∪ Y . Furthermore the locusts of X and Y

all march towards Xj and Yk respectively, hence the distance between any consecutive
pair Xi, Xi+1 or Yi, Yi+1 could not have increased. Thus X ′ and Y ′ are compact.

To show that X ′ and Y ′ are deadlocked at time t + 1, we need just to show that
distc(Xj−1, Xj) is 1 at time t+1. Since the distances do not increase, if distc(Xj−1, Xj)
was 1 at time t, we are done. Otherwise distc(Xj−1, Xj) = 2 at time t, and since Xj

did not move (it was in a conflict with Yk), Xj−1 decreased the distance in the last
time step, hence it is now 1. ■

Lemma 4.4.15. Suppose P and Q are the only segments on track K at time t0, and
P ’s locusts have clockwise heading. Let d = distc(P1, Q1). After at most 3d time steps,
P (t0 + 3d) and Q(t0 + 3d) are in deadlock, or the track is stable.

58

Proof The trackK consists of locations of the form (x, y) for some fixed y and 1 ≤ x ≤ n.
For brevity, in this proof we will denote the location (x, y) simply by its horizontal
coordinate, i.e., x, by writing (x) = (x, y).

We may assume w.l.o.g. that t0 = 0, and that P1 is initially at (0). Note that
this means Q1 is at (d) at time 0. If at any time t ≤ 3d, the track is stable, then we
are done, so we assume for contradiction that this is not the case. This means that
P1 and Q1 do not change their headings before time 3d. This being the case, we get
that distc(P1, Q1) is non-increasing before time 3d. As the segments P (t) and Q(t)
move towards each other at every time step t ≤ 3d, we can consider only the interval of
locations [0, d], i.e., the locations (0), (1), . . . (d). We then define the distance dist(·, ·)
between two locusts in this interval whose x-coordinates are x1 and x2 as |x1 − x2|.

At any time t ≤ 3d, we may partition the locusts in [0, d] into maximal compact sets
of locusts. This partition is unique, by Observation 4.4.13. Let us label the maximal
compact sets of locusts that belong to P (t) as Ct

1, Ct
2, . . . Ct

ct
, where the segments are

indexed from 1 to ct, sorted by increasing x coordinates, such that Ct
1 contains the

locusts closest to (0). Analogously, we label the maximal compact sets that belong
to Q(t) as Wt

1,Wt
2, . . .Wt

wt
, with indices running from 1 to wt, sorted by decreasing

x-coordinates such thatWt
1 contains the locusts that are closest to (d) (see Figure 4.5).

In this proof, the distance between two sets of locusts X, Y , denoted dist(X, Y), is
defined simply as the minimal distance between two locusts A ∈ X, B ∈ Y . Our proof
will utilise the functions:

L1(t) =
ct−1∑
i=1

dist(Ct
i , Ct

i+1), L2(t) =
wt−1∑
i=1

dist(Wt
i ,Wt

i+1)

L3(t) = dist(Ct
ct

,Wt
wt

), L(t) = L1(t) + L2(t) + L3(t)
(4.1)

L1(t) is the sum of distances between consecutive clockwise-facing sets in the par-
tition at time t. L2(t) is the sum of distances between the counterclockwise sets. L3(t)
is the distance between the two closest clockwise and counterclockwise facing sets. The
function L(t) is the sum of distances between consecutive compact sets in the partition.
When L(t) = 1, there are necessarily only one clockwise and one counterclockwise fac-
ing sets in the partition, which must equal P (t) and Q(t) respectively. Furthermore,
L(t) = 1 implies that the distance between P (t) and Q(t) is 1. Hence when L(t) = 1,
P (t) and Q(t) are both in deadlock. The converse is true as well, hence L(t) = 1 if
and only if P (t), Q(t) are in deadlock. We will use L(t) as a potential or “Lyapunov”
function [LL12] and show it must decrease to 1 within 3d time steps. By Lemma
4.4.14, once P and Q are in deadlock they will remain in deadlock until one of them is
eliminated, which completes the proof.

Let us denote by max(X) the locust with maximum x-coordinate in X, and by
min(X) the locust with minimal x-coordinate. We may also use max(X) and min(X)

59

Figure 4.5 A partition into maximal compact subsets as in our construction. In this
configuration, L1(t) = 3, L2(t) = 3, L3(t) = 1, and L(t) = 7. Note that although C1, C2
are compact, P (t) = C1 ∪ C2 is not compact, and similarly Q(t) is not compact, thus
P (t) and Q(t) are not in deadlock and L(t) ̸= 1.

to denote the x coordinate of said locust. Note that dist(Ct
i , Ct

i+1) is the distance
between max(Ct

i) and min(Ct
i+1).

Recall that in the locust model, every time step is divided into a phase where locusts
move horizontally (on their respective tracks), and a phase where they move vertically.
First, let us show that the sum of distances L1(t) does not increase due to changes
in either the horizontal or vertical phase. Since L1(t) is the sum of distances between
compact partition sets whose locusts move clockwise, and for all Ct

i except perhaps
Ct

ct
, max(Ct

i) always moves clockwise, the distance dist(Ct
i , Ct

i+1) does not increase as a
result of locust movements (note that clockwise movements of max(Ct

i) do not result
in a new compact set because the rest of the locusts in Ct

i follow it). Furthermore,
since conflicts cannot result in a new maximal compact set in the partition, conflicts
do not increase L1(t). Hence, L1(t) does not increase in the horizontal phase. In the
vertical phase, clockwise-heading locusts entering the track either create a new set in
the partition, which does not affect the sum of distances (as they then merely form a
“mid-point” between two other maximal compact sets), or they join an existing compact
set, which can never increase L1(t). By the locust model, the only locusts that can
move tracks are max(Ct

ct
) and min(Wt

wt
), since these are the only locusts for which

the condition b(A) ≠ b(A→) is true, so locusts moving tracks cannot increase L1(t)
either. In conclusion, L1(t) is non-increasing at any time step. By analogy, L2(t) is
non-increasing.

Similar to L1 and L2, the distance L3(t) cannot increase as a result of locusts
entering the track. It can increase as a result of a locust conflict which eliminates
either Wt

wt
or Ct

ct
, but such an increase is compensated for by a comparable decrease

in either L1(t) or L2(t). It is also simple to check that, since P (t) and Q(t) are always
moving towards each other when they are not in deadlock (i.e., when L(t) > 1), there
will be at least two compact sets in the partition that decrease their distance to each
other, hence L1, L2 or L3 must decrease by at least 1 in the horizontal phase.

To conclude: L1(t) and L2(t) are non-increasing. L3(t) is non-increasing during the
horizontal phase and as a result of new locusts entering K. If L(t) > 1, L(t) decreases
during each horizontal phase. Hence, L(t) decreases in every time step where L(t) > 1
and no locusts in K move to another track.

What happens when locusts in K do move to another track? As proven, L1(t)

60

and L2(t) do not increase. However, the distance L3(t) will increase, since the only
locusts that can move tracks are max(Ct

wt
) and min(Wt

ct
). It is straightforward to

check that when Ct
ct

contains more than one locust, L3(t) will increase by at most 2 as
a result of max(Ct

wt
) moving tracks. When Ct

ct
contains exactly one locust, L3(t) can

increase significantly (as L3(t) then becomes the distance between Ct
ct−1 and Wwt), but

any increase is matched by the decrease in L1(t) as a result of Ct
ct

being eliminated.
Analogous statement hold for Wt

wt
, and hence L3(t) can increase by at most 2 as a

result of one locust moving out of the track. We need to bound, then, the number of
locusts in K that move tracks before time 3d. We define the potential function F (t):

F (t) =
ct−1∑
i=1

(dist(Ct
i , Ct

i+1)− 1) +
wt−1∑
i=1

(dist(Wt
i ,Wt

i+1)− 1) + |P (t) ∪Q(t)|=

= L1(t) + L2(t)− ct − wt + |P (t) ∪Q(t)|
(4.2)

F (t) is the sum of the empty locations between consecutive compact sets in the
partition whose locusts have the same heading, plus the number of locusts in K. Note
that F (t) ≥ 0 at all times t. We will show F (t) is non-increasing, and that it decreases
whenever a locust leaves the track. Hence, at most F (0) locusts can leave the track.

Let us show that F (t) is non-increasing. We already know L1 and L2 are non-
increasing. In the horizontal phase, |P (t) ∪ Q(t)| is of course unaffected. ct and wt

can decrease as a result of maximal compact sets merging, hence increasing F , but this
can only happen when the distance between two such sets has decreased, hence the
resulting increase to F is undone by a decrease in L1 and L2. Hence, F (t) does not
increase because of locusts’ actions during the horizontal phase.

Likewise, locusts leaving K can decrease ct or wt when they cause a maximal com-
pact set to be eliminated, but this is matched by a comparable decrease in L1 or L2

which means that F does not increase due to locusts moving out of the track. Further-
more, |P (t) ∪ Q(t)| decreases when this happens. Hence, a locust moving out of the
track decreases F (t) by at least 1. Finally, let us show that locusts entering the track
does not increase F (t).

At time t, locusts can only enter the track at empty locations that are found in
intervals of the form [max(Wt

i), min(Wt
i+1)] or [max(Ct

i+1), min(Ct
i)] for some i. In

particular, locusts cannot enter empty locations that are between two locusts belonging
to the same compact set (because a locust in that set will always be attempting to move
to that location in the next time step, and the model disallows vertical movements to
such locations), nor can they enter the track on the empty locations between min(Ct

ct
)

and max(Wt
wt

). Thus, locusts entering the track at time t decrease the amount of
empty locations between two clockwise or counterclockwise compact partition sets (and
perhaps cause the sets between which they enter to merge into a single compact set).
This will always decrease L1(t) + L2(t)− ct−wt by at least 1 and increase |P (t)∪Q(t)|

61

by 1. On net, we see that new locusts entering K either decreases or does not affect F .
In conclusion, F (t) is non-increasing, and any time a locust moves to another track,

F (t) decreases by 1. Thus, at most F (0) locusts can move from K to another track.
Recall that locusts moving out of the track can increase L(t) by at most 2. Hence after
at most L(0) + 2F (0) ≤ d + 2d = 3d time steps, L(t) = 1. ■

Lemma 4.4.16. Let seg(t) denote the set of segments in all tracks at time t. At time
t + 3n, either every segment is in deadlock with some other segment, or |seg(t + 3n)|<
|seg(t)|.

Proof Consider some track K and a segment P which is in that track at time t. Let us
assume that |seg(t + 3n)|= |seg(t)|, and show that P (t + 3n) must be in deadlock with
another segment. At any time t′ ≥ t, as long as the number of segments on K does
not decrease, the locusts of P (t′) will be marching towards locusts of another segment,
which we will label Q(t′). They cannot collide or conflict with locusts belonging to any
segment other than Q(t′). Hence, other segments in K do not affect the evolution of
P (t) and Q(t) before time t + 3n, and we can assume w.l.o.g. that P (t) and Q(t) are
the only segments in K at time t. Let d be as in the statement of Lemma 4.4.15. Since
n ≥ d, Lemma 4.4.15 tells us that at some time t ≤ t∗ ≤ t + 3n, P (t∗) and Q(t∗) must
be in deadlock. Since by Lemma 4.4.14, P and Q must remain in deadlock until one of
them is eliminated, we see that at time t + 3n they must still be in deadlock, since we
assumed |seg(t)|= |seg(t + 3n)|.

Theorem 4.3. E[Tstable] = O(mn)

Proof Let |seg(t)| denote the number of segments at time t. E[Tstable] can be computed
as the sum of times E[T2 + T4 + . . . + T|seg(0)|], where Ti is the expected time until the
number of segments drops below i, if it is currently i (we increment the index by 2
since segments are necessarily eliminated in pairs).

Let us estimate E[T2i]. Suppose that at time t, the number of segments is 2i. Then
after 3n steps at most, either the number of segments has decreased, or all segments
are in deadlock. There are in total i pairs of segments in deadlock, and as there
are m locusts, there must be a pair P , Q that contains at most min(m/i, n) locusts
at time t + 3n. By Lemma 4.4.14, P , Q remain in deadlock until either P or Q is
eliminated. We can compute how long this takes in expectation, since at every time
step after time t + 3n, the heads of P and Q conflict, resulting in one of the segments
increasing in size and the other decreasing. Hence, the expected time it takes P or
Q to be eliminated is precisely the expected time it takes a symmetric random walk
starting at 0 to reach either |P | or −|Q|, which is |P |·|Q|≤ min((m

2i)
2, (n

2)2). Hence,
E[T2i] ≤ 3n + min((m

2i)
2, (n

2)2).
Let us first assume m ≥ n. Using the fact that min((m

2i)
2, (n

2)2) = (n
2)2 for i ≤

⌊m/n⌋, we have:

62

E[T2 + T4 + . . . + T|seg(0)|] ≤ 3n · |seg(0)|
2

+ ⌊m/n⌋(n

2
)2 +

∞∑
i=⌈m/n⌉

(m

2i
)2

≤ 3
2

mn + 1
4

mn + 1
4

m2
∞∑

i=0
(1
m/n + i

)2

≤ 7
4

mn + 1
4

m2(n2

m2 + n

m
) ≤ 9

4
mn

(4.3)

Where we used the inequalities ∑∞i=0(1
m/n+i)

2 ≤ n2

m2 +
∫∞

i=0(1
m/n+i)

2 = n2

m2 + n
m and

|seg(0)|≤ m. If m < n, by using the identity the identity ∑∞i=1(1
i)2 = π2

6 we get:

E[T2+T4+. . .+T|seg(0)|] ≤ 3n· |seg(0)|
2

+
∞∑

i=1
(m

2i
)2 ≤ 3

2
mn+ π2

24
m2 ≤ (3

2
+ π2

24
)mn (4.4)

And so we see that E[Tstable] = O(mn).

Next we wish to show that E[Tstable] = O(log(k)n2). For this, we require the
following result:

Lemma 4.4.17. Consider k independent random walks with absorbing barriers at 0
and 2n, i.e., random walks that end once they reach 0 or 2n. The expected time until
all k walks end is O(n2 log(k)).

Proof First, let us set k = 1 and estimate the probability that the one walk has not
ended by time t. Let P be the transition probability matrix of the random walk, and
let v be the vector describing the initial probability distribution of the location of the
random walker. Then vP t is the probability distribution of its location after t time
steps [LPW09]. The evolution of vP t is well-studied and relates to “the discrete heat
equation” [Law10]. The probability that the walk has not ended at time t is the sum∑2n−1

i=1 v(i). Asymptotically, this sum is bounded by O(λt) where λ = cos(π
2n) is the

2nd largest eigenvalue of P (cf. [Law10]).
Returning to general k, let Tk be a random variable denoting the time when all

k walks end. By looking at the series expansion of cos(1/x), we may verify that for
n > 1, cos(π

2n) < 1 − 1
n2 . From the previous paragraph, and because the walks are

independent, we therefore see that

Pr(Tk ≥ t) = 1− Pr(T1 < t)k = 1− (1−O(λt))k = 1− (1−O((1− 1
n2)t))k (4.5)

Consequently, for t≫ n2, the following asymptotics hold for some constant C:

Pr(Tk ≥ t) < 1− (1− Ce−t/n2)k (4.6)

63

Where we used the fact that (1 + x/n)n → ex as n → ∞. Note that Pr(Tk ≥
t + n2 log(C)) < 1− (1− e−t/n2)k. Hence:

E[Tk] =
∫ ∞

0
Pr(Tk > t)dt ≤ n2 log(C) +

∫ ∞
0

1− (1− e−t/n2)kdt

= n2 log(C) +
∫ ∞

0
1−

k∑
j=0

(
k

j

)
(−1)je−tj/n2

dt

= n2 log(C) +−
k∑

j=1

(
k

j

)
(−1)j

∫ ∞
0

e−tj/n2
dt

= n2 log(C) +−n2
k∑

j=1

(
k

j

)
(−1)j

j
= O(n2 log(k))

(4.7)

Where we used the equality ∑k
j=1

(k
j

) (−1)j

j = −
∑k

j=1
1
j ≈ log(k).

Theorem 4.4. E[Tstable] = O(log(k) · n2)

Proof Let segi(t) denote the number of segments in track i at time t, and defineMt =
max1≤i≤k segi(t). Let us bound the expected time it takes forMt to decrease. Define
the set K(t) to be all tracks that have |Mt| segments at time t. Then Mt decreases
at the first time t′ > t when all tracks in K(t) have had their number of segments
decrease. We may bound this with the following argument: slightly generalizing Lemma
4.4.16 to hold for subsets of tracks2 , if Mt doesn’t decrease after 3n time steps (i.e.,
Mt = Mt+3n), all tracks in K(t + 3n) now have all their segments in deadlock. The
number of deadlocked segment pairs at every track in K(t + 3n) isMt/2, so in every
such track there is such a pair with at most 2n/Mt locusts. By Lemma 4.4.17, using
a similar argument as Theorem 4.3, these pairs of deadlocked segments resolve into a
single segment after at most c · log(k)(2n

Mt
)2 expected time for some constant c. Hence,

the number of expected time steps for Mt to decrease is bounded above by 3n +
c log(k)(2n

Mt
)2.

Tstable is the first time when Mt = 0. Let us assume n is even for simplicity (the
computation will hold regardless, up to rounding). We have that M0 ≤ n, and Mt

decreases in leaps of 2 or more (since segments can only be eliminated in pairs). Hence,
Tstable is bounded by the amount of time it takes Mt to decrease at most n/2 times.
By linearity of expectation, this time can be bounded by summing 3n + c log(k)(2n

Mt
)2

over Mt = n, n− 2, n− 4, . . . 2:

2Lemma 4.4.16 holds not just for the set seg(t) but for the segments in a given subset of tracks,
with the proof being virtually identical. Here we apply the Lemma to the subset K(t + 3n).

64

E[Tstable] ≤n

2
· 3n + c log(k)(2n

n
)2 + c log(k)(2n

n− 2
)2 + . . . + c log(k)(2n

2
)2

≤3
2

n2 + 4c log(k)n2
∞∑

i=1
(1
2i

)2 = 3
2

n2 + π2

6
c log(k)n2 = O(log(k)n2)

(4.8)

As claimed. ■

The proof of Theorem 4.2 follows immediately from Theorems 4.3 and 4.4, by taking
the minimum. ■

Erratic track switching and global consensus

Theorem 4.2 shows that, after finite expected time, all locusts on a track have identical
heading. This is a stable local consensus, in the sense that two different tracks may
have locusts marching in opposite directions forever. We might ask what modifications
to the model would force a global consensus, i.e., make it so that stabilization occurs
only when all locusts across all tracks have identical heading. There is in fact a simple
change that would force this to occur: let us assume that at time step t any locust has
some probability of acting “eratically” in either the vertical or horizontal phases:

1. With probability r, a locust might behave erratically in the horizontal phase,
staying in place instead of attempting to move according to its heading.

2. With probability p, a locust may behave erratically in the vertical phase, meaning
that even if the vertical movement conditions (1)-(3) of the model (see Section
4.3) are not fulfilled, the locust attempts to move vertically to an adjacent empty
space on the track above or below them (if such empty space exists).

These behaviours are independent, and so a locust may behave erratically in both
the vertical and horizontal phases, in just one of them, or in neither.

The next theorem shows that the existence of erratic behaviour forces a global
consensus of locust headings. The goal is to prove that there is some finite time after
which all locusts must have the same heading. Note that the bound we find for this
time is crude, and is not intended to approximate Tstable. We study the question of
how p affects Tstable empirically in the next section.

Theorem 4.5. Assuming there is at least one empty space (i.e., m < nk), and the
probability of erratic track switching is 0 < r, p < 1, the locusts all have identical
heading in finite expected time.

Proof Our goal is to show that all locusts must have identical heading in finite expected
time. We will find a crude upper bound for this time. It suffices to show that as long
as there are two locusts with different headings in the system (perhaps not on the same

65

track), there is a bounded-above-0 probability q that within a some constant, finite
number of time steps C (and shall show C = O(log(k)n2 + nk)), the number of locusts
with clockwise heading will increase. This amounts to showing that there is a sequence
of events, each individual event happening with non-zero probability, that culminates
in a conflict between two locusts occurring (since any conflict has probability 0.5 of
increasing the number of clockwise locusts). Since q > 0, the only stable state of locust
headings is the state where all locusts have identical heading, as otherwise there is
always some probability that all locusts will have clockwise heading after m · C time
steps. This completes the proof.

Let us show such a sequence of events. First let us consider the case where there
is a track in which two locusts have non-identical headings. In this case, assuming no
locusts behave erratically for O(log(k)n2) steps (which occurs with a tiny but bounded-
above-0 probability since p, r > 0), Theorem 4.2 tells us that in expected O(log(k)n2)
steps, locusts on the same track will have identical heading. Hence, there is a sequence
of events that happens with non-zero probability which leads to local consensus in the
tracks.

If any conflict occurs during this sequence, we are done. Otherwise, we need to
show a sequence of events that leads to a conflict, assuming all tracks are stable. The
only thing that causes locusts in local consensus to move tracks is erratic behaviour. If
two adjacent tracks have locusts with non-identical heading, and there is at least one
empty space in one of them, then (since r > 0) with some probability within at most
n time steps an empty space in one track will be vertically adjacent to a locust in the
other track. At this point, with probability p, that locust will move from one track
to the other. This creates a situation where in one track there are locusts of different
headings again. If the erratic locust moves tracks at the right time, upon moving it will
be adjacent to another locust in its new track, whose heading is different. Hence, the
erratic locust will enter a conflict in the next time step, which will increase the number
of clockwise locusts with probability 0.5.

Now let us consider a pair of two adjacent tracks with locusts of different headings
such that there no empty space in one of them. We note that since there is at least
one empty location in some track, erratic behaviour can cause that empty location to
move vertically in an arbitrary fashion until, after at most k movements, it enters a
track from the pair. With non-zero probability, this can take at most nk time steps,
after which we are reduced to the situation in the previous paragraph.

A pair of adjacent tracks that have locusts with different headings must exist unless
there is global consensus. Hence, in every O(log(k)n2 + nk) time steps where there is
no global consensus, there is a some probability q > 0 that the number of clockwise-
heading locusts will increase. ■

66

Figure 4.6 Simulations of the locust model. The y axis is Tstable. Column (a) measures
Tstable for k = 1...30, with n fixed at 30. Column (b) measures Tstable for n = 1...60,
with k fixed at 5. Column (c) measures Tstable with n = 30, k = 5, and p (the probability
of erratic behaviour) going from 0 to 1. The top row measures Tstable in sparse locust
configurations (m ≈ 0.1n), while the bottom row does so for dense configurations
(m ≈ 0.5n). The dashed red line estimates Tstable when locusts never switch tracks
(except while behaving erratically in column c); the blue line estimates Tstable when
locusts switch tracks as often as the model rules allow. Error bars show the standard
deviations.

Figure 4.7 Simulations of the locust model fixing k = 1 and letting n run from 1
to 100. The y axis is Tstable. The orange line denotes dense locust configurations
(m ≈ 0.5n), and the green line denotes sparse configurations (m ≈ 0.1n). Error bars
show the standard deviations.

4.5 Simulation and empirical evaluation

Let us explore some questions about the expected value of Tstable through numerical
simulations. Certain aspects of the locusts’ dynamics were not studied in our formal
analysis: the most interesting of which is the helpful effects of track switching on Tstable.

67

Recall that our model allows locusts to switch tracks if this would enable them to avoid
a conflict and join a track where locally, locusts are marching in their same direction. At
least in principle, this seems like it should help our locusts achieve local stability faster,
hence decrease Tstable. However, recall also that we do not specify when locusts switch
tracks, which means that some locusts might never switch tracks, or they might choose
to do so in the worst possible moments. Hence, the positive effect track-switching
usually has on Tstable cannot be reflected in the bounds we found for E[Tstable], since
these bounds must reflect all possible locust behaviours. Under ordinary circumstances,
however, it seems as though frequent track switching should noticeably decrease the
time to local stabilization. As we shall see numerically, this is indeed the case. This
justifies the track-switching behaviour as a mechanism that, despite being highly local,
enables the locusts to achieve local consensus about the direction of motion sooner.

In Figure 4.6, (a) and (b), we measure Tstable as it varies with n and k, assuming
the probabilities of erratic behaviour are 0 (i.e., r = p = 0). We simulate two different
locust configurations: a “dense” configuration, and a “sparse” configuration. In the
dense configuration, 50% of locations are initiated with a locust, with the locations
chosen at random. In the sparse configuration, 10% of locations are initiated with a
locust (or slightly more, to guarantee all tracks start with 2 locusts). The locusts are
initiated with random heading. We measure the effect of track switching on Tstable: the
opaque lines measure Tstable when locusts switch tracks as often as they can (while still
obeying the rules of the model), and the dotted lines measure Tstable when locusts never
switch tracks. For every value of n, k, we ran the simulation 2000 times and averaged
Tstable over all simulations.

As we can see, in the sparse configuration, track-switching has a significantly pos-
itive effect on time to stabilization. For example, with k = 30, n = 30, Tstable is
approximately 13.5 when locusts switch tracks as soon as they can, and approximately
25 when they never switch tracks–nearly double. In the dense configuration, we see
that enabling locusts to move tracks has little to no effect, since the locust model rarely
allows them to do so due to the tracks being overcrowded.

In column (c) of Figure 4.6, we measure how a non-zero probability p of erratic
behaviour affects Tstable. We set r = 0. As we proved in the previous section, whenever
p > 0, stabilization requires global rather than local consensus. Hence, we cannot
directly compare the Tstable of these graphs with columns (a) and (b), where Tstable

measures the time to local consensus. We note that the expectation and variance of
Tstable approach ∞ as p goes to 0, since when p = 0, global stability can never occur in
some initial configurations. E[Tstable] decreases sharply as p goes to some critical point
around 0.1, and decreases at a slower rate afterwards. It is interesting to note that
low probability of erratic behaviour affects E[Tstable] significantly more in the sparse
configuration, where for p = 0.02, if locusts also switch tracks whenever the model
allows them, E[Tstable] was measured as being approximately 1974, as opposed to 669
in the dense configuration. One of the core reasons for this seems to be that, in the

68

sparse configuration, when a locust erratically moves to a track with a lot of locusts
not sharing its heading, it will often be able to non-erratically move back to its former
track, thus preventing locust interactions between tracks of different headings. When
we disabled the locusts’ ability to switch tracks non-erratically, Tstable was significantly
smaller in the sparse configuration (E[Tstable] ≈ 232 for p = 0.02).

Based on the above, we make the curious observation that, while non-erratic track
switching accelerates local consensus, for some track-switching behaviours, it will in fact
decelerate the attainment of global consensus. This is seen by the fact that frequent non-
erratic track-switching was helpful in Columns (a) and (b) of Figure 4.6, but increased
time to stabilization in Column (c). This is perhaps a very natural observation, because
agents that aggressively switch tracks will attempt to avoid conflict as often as possible,
whereas conflict is necessary to create global consensus.

To finish this section, we also verify the bounds of Theorem 4.1 by numerical sim-
ulation, by fixing k = 1 and measuring Tstable as n goes from 1 to 100–see Figure 4.7.
We again measure both sparse and dense configurations (i.e., m ≈ 0.1n and m ≈ 0.5n

respectively). The average expected time appears asymptotically bounded by m2, as
expected. We also simulated the asymptotic-worst case locust configuration in the
proof of Theorem 4.1 (not illustrated in Figure 4.7) and confirmed its stabilization
time is asymptotically Ω(m2 + n −m), verifying that the bounds of Theorem 4.1 are
asymptotically tight.

4.6 Discussion

We studied collective motion in a model of discrete locust-inspired swarms, and bounded
the expected time to stabilization in terms of the number of agents m, the number of
tracks k, and the length of the tracks n. We showed that when the swarm stabilizes,
there must be a local consensus about the direction of motion. We also showed that,
when the model is extended to allow a small probability of erratic behaviour to perturb
the system, global consensus eventually occurs.

A direct continuation of our work would be to find upper bounds on time to stabi-
lization when there is some probability of erratic behaviour. Furthermore, our empirical
simulations suggest several curious phenomena related to erratic behaviour: first, there
seems to be a clash between “erratic” and non-erratic, “rational” track-switching, as
when locusts switch tracks non-erratically in order to avoid collisions, this seems to ac-
celerate the attainment of local consensus, but mostly hinder the attainment of global
consensus. Second, increasing the probability of erratic track-switching p behaviour
was helpful in accelerating global consensus up to a point, but in simulations, its im-
pact seemed to fall off past a small critical value of p. In future work, it would be
interesting to investigate these “phase transition” aspects of the model.

As discussed in the Related Work section, in [BSC+06; YEE+09] it is observed
that at intermediate densities, swarms of locusts exhibit periodic directional switching,

69

and at low densities the directions of motion are random. Although this phenomenon
does not occur in our model, if we assume each locust has a small probability r > 0
of randomly flipping their heading at the beginning of a time step, such directional
switching becomes possible, with probability inversely proportional to the density (or
so we expect). This extension of our model, of course, does not have stable states,
thus cannot be studied by the same methods we used in this work. But we would be
interested in studying it in terms of the expected time the swarm spends in consensus
or near-consensus about the direction of motion before directional switching occurs.

For the sake of mathematical theory, we would be very interested in rigorous results
established over a fully asynchronous version of this model where locust wake-up times
are determined independently. In such a model, the winner of a conflict between two
locusts can be determined as the locust that wakes up first (thus exerts pressure on
the other locust first), which is perhaps more elegant. We speculate that most of the
conclusions will not be majorly affected by transitioning to an asynchronous model.

Although our agent marching model is inspired by experiments on locusts, it can
be understood in more abstract terms as a model that describes a situation where
many agents that wish to maintain a direction of motion are confined to a small space
where they exert pressure on each other. It is natural to ask what kinds of collective
dynamics, if any, we should expect when this small space has a different topology;
rather than a ringlike arena, we might consider, e.g., a square arena. We believe that
rich models of swarm dynamics can be discovered through observing natural organisms
exert pressure on each other in such environments. In the introduction, we mentioned
points of similarity between our model and models of opinion dynamics. We suspect
that these points of similarity will remain in settings with non-ringlike arenas, and
might provide a starting point for formally modelling and analysing them.

70

Chapter 5

Swarm Robotics I: Minimizing
Energy in the Multi-Robot
Uniform Dispersion Problem

The previous chapter concludes our study of natural algorithms. The second overarch-
ing topic of this dissertation is swarm robotics. The objective of swarm robotics is to
enable a large group of simple and autonomous mobile robots to work cooperatively to-
wards complex goals. The ant-robotics paradigm introduced in Chapter 1 relates swarm
robotics to the natural world by connecting robots’ capabilities to capabilities exhibited
by swarms of social insects. Whereas in the last few chapters our objective was to study
the behaviour of (idealized) ants and locusts in the language of this paradigm, we now
turn to the problem of designing algorithms in the ant-robotics paradigm that are to
be used by robotic swarms made by and for human beings.

In the next two chapters we shall investigate a fundamental problem in swarm
robotics called swarm uniform dispersal, wherein mobile robots are tasked with uni-
formly covering an a priori unknown discrete environment (e.g. a maze or tunnel). In
this chapter, which is based on the paper [AB19b], we are interested in solving uniform
dispersal while minimizing the movement and active time of each individual robot, so
as to minimize their energy requirements. Our contribution is a local robotic strategy
for simply connected grid environments that, by exploiting their topology, achieves op-
timal makespan (the amount of time it takes to cover the environment) and minimizes
the maximal number of steps taken by the individual robots before their deactivation.
The robots succeed in discovering optimal paths to their eventual destinations, and
finish the covering process in 2V − 1 time steps, where V is the number of cells in
the environment. We further prove an impossibility result which says that a similar
algorithm cannot exist in non-simply connected grid environments assuming robots’
sensing range is limited. This impossibility result holds even assuming the swarm is
composed of non-ant-like robots with infinite memory and communication range.

71

5.1 Introduction

In many real life scenarios, e.g. mapping or hazard detection, one is interested in
deploying agents over an unknown area and covering it for the purposes of sensing
or reacting [HMS02]. The use of swarm robotics to solve such problems has many
inherent advantages, such as scalability, greater coverage, and autonomy in mission
execution. In the uniform dispersal problem introduced by [HAB+04], a large number
of mobile robots emerge over time from a source or several source locations (called
“doors” in the literature), and are tasked to completely cover an unknown environment
R by occupying every location and to terminate their work in finite time [BDS08]. The
robots must not collide (i.e. two robots must never occupy the same location), nor step
outside the boundaries of the environment.

It is often the case, e.g. when the robots are traveling large distances or are airborne,
that a lot of energy is required for the sustained activity of robots in the swarm. In
this chapter we are interested in solving what is called the uniform dispersal problem
in simply connected grid environments while minimizing the movement and active time
of each individual robot, so as to minimize the swarm’s energy requirements.

Hsiang et al. [HAB+04] [HAB+03] introduced the problem of uniform dispersal
in discrete planar domains by mobile robots endowed only with finite memory, local
sensors, and local communication. Their DFS-esque “follow the leader” strategy enables
robots to cover the environment in optimal time, assuming a synchronous time scheme.
Much follow-up work has focused on achieving dispersal with weaker models of robots,
e.g. disallowing communication, reducing memory, or assuming asynchronous time
[BDS08] [HL17a] [BDS13]. Barrameda et al. [BDS08] have shown that the dispersal
problem is intractable under the usual assumptions if the robots are assumed to be
oblivious (that is, to possess no persistent states), though there have been attempts
to get around this limitation using randomization [HL17b]. It is standard to assume
that the robots are moving in a connected grid environment, as any 2D space can be
approximated well by pixelation into tiny grid cells of uniform size.

From a theoretical perspective, the problem of dispersing and coordinating mobile
robotic agents while minimizing movement or energy has been studied extensively both
as a centralized motion planning problem and in distributed sensor networks [DHM09]
[LWZ+15] [FS11], and various computational hardness results have been proven in the
case of general graph environments [DHM+09]. More broadly, multi-agent scheduling
problems have been studied in the presence of energy constraints [HAK18]. Specifically
in the context of uniform dispersal for robotic sensors, the question of minimizing travel
for orthogonal areas that we here concern ourselves with was discussed in the original
paper by Hsiang et. al [HAB+04] and soon after in Stainzberg’s doctoral dissertation
[Szt03], and more recently in [HB16] and [HL17b].

In recent decades there has been considerable effort dedicated to the algorithmic
problems of agent coverage or exploration, wherein a robot or team of robots must com-

72

pletely explore, occupy, or map an area. Attention has been given to the case of a single
robot tasked with visiting every vertex of a graph or grid environment [BS07] [YAK15],
to single- and multi-robot path planning [AHKG+08], to natural or pheromone-based
computation models [PDE+01] [WLB97] [WLB00], to related formation or dispersal
problems [MG07] [CD08], and to a multitude of other topics. We refer the reader to
[GC13] or [APB18] for recent surveys. The problem of uniform dispersal distinguishes
itself from many of these by its distinctly online nature. The robots emerge onto the
environment at different times and must successfully embed themselves into the ongo-
ing exploration effort, without colliding with other robots, and without interrupting
the constant outflow of new robots. They must do this under stringent computational,
sensory, and communication restrictions–in most recent models, the robots, modelled
as finite automata, are not allowed to talk to each other, and cannot even tell the
difference between environmental obstacles and the presence of robots active in the
formation. We find it fairly surprising that under these restrictions, robots are capable
of exploring an entirely unknown environment in theoretically optimal time, as well as
(we shall see) walk only in shortest paths to their destinations while doing so.

Much attention has been given to the problem of deployment and coverage in GPS-
denied environments, as this may enable the deployment of robotic fleets outside lab-
oratory conditions and their utilization in real world scenarios. Dispersal strategies
that operate under stringent restrictions on communication and sensing may be es-
pecially relevant to future investigations in this domain. Implementation, however,
forms a technical barrier, as when looking at the problem of generating robust uniform
coverage from a systems perspective the issues of relative visual localization - range, an-
gular coverage and persistence - become important. There has been progress towards
overcoming these barriers in a number of different settings. In [BV12] the authors
discuss a visual relative localization method suited for autonomous navigation and ob-
stacle avoidance in indoor environments, for mobile robots with limited computational
power. In [SBT+17] the authors present a visual localization method based on an image
processing algorithm suitable for use on small quadcopters. The algorithm assumes all
the quadcopters have identical but specific markings that ease the localization. These
are but examples of the sensors an agent might use when implementing strategies that
operate under such restrictions.

Our contribution: Working in a synchronous time setting, Hsiang et al. [HAB+04]
pose the problem of minimizing the total and individual number of steps the robots
take (the “total travel” and “individual travel”), while achieving optimal makespan–the
time before complete coverage of the environment. They describe several algorithms
for general grid environments that consecutively improve on each other in this respect,
but these algorithms do not achieve a global optimum.

We describe a local uniform dispersal strategy that, for simply connected grid en-
vironments, achieves optimal makespan and minimizes the total travel and maximal
individual travel. The strategy’s goal is to enable a robot to settle in place as soon as

73

possible, thereby minimizing the energy consumption. It exploits the ability to decom-
pose simply connected environments into a tree of simply connected sub-environments
via “halls”–defined as corners of the environment that also have an obstacle located
diagonally opposite to them. We work in a setting similar to [HAB+04], where time is
synchronous and robots have local sensors and finite memory. Specifically, the robots
require 5 bits of persistent memory (25 persistent states), and a visibility span of Man-
hattan distance 2. As is sometimes assumed, e.g. in [HL17a], they are initialized with
a common notion of up, down, left and right. Unlike [HAB+04], our algorithm works
without assuming any inter-robot communication capabilities: the robots are only ca-
pable of seeing environmental obstacles (including other robots that block them), and
are unable to distinguish between kinds of obstacles.

By attempting to restrict their movement to as few directions as possible, our
strategy enables the robots to travel in shortest paths from their arrival point to their
eventual, a-priori unknown, settling point. The robots finish dispersing in 2V − 1 time
steps, where V is the number of cells in the environment.

On the converse, we show that no local strategy can minimize total travel in general
grid environments, even assuming the swarm is composed of non-ant-like robots with
infinite memory and communication range.

5.2 Model

Consider the integer grid Z2 = Z × Z, whose vertices are points (x, y) where x and
y are both integers, and (x1, y1) is connected to (x2, y2) if and only if the Manhattan
distance |x1 − x2|+|y1 − y2| is exactly 1. A grid environment or region R is defined
as a connected sub-graph of Z2. The complement of R, denoted Rc, is defined as the
sub-graph Z2 −R of Z2. We call the vertices of Rc walls.

Definition 5.2.1. A region R is said to be simply connected if and only if any path
v1v2 . . . v1 of vertices in R that forms a closed curve does not surround any vertices of
Rc.

In particular, a region R is simply connected if Rc is connected.
A robot is a mobile point in R with limited vision and small finite memory. No two

robots may occupy the same location. The visibility range of all robots is assumed to
be 2, meaning at every time step, a robot is aware of unoccupied vertices in R that are
at a Manhattan distance of 2 or less from it. It infers from this the positions of local
obstacles (walls or other robots), but cannot distinguish between types of obstacles. All
robots have a shared notion of up, down, left and right upon emergence from s.

Time is discretized to steps of t = 1, 2, At every time step, all robots perform a
Look-Compute-Move operation sequence, in which they examine their environment and
move to a new location based on a computation they perform (a robot may also choose
to stay in place - this counts as a move). This occurs synchronously, meaning that all

74

robots move to their computed next location at the same time. The “beginning” of a
time step refers to the configuration of the robots at that time step before the robots
move. The “end” of a time step is the configuration at that time step after the robots
move.

We denote by prev(A) the position of a robot A at the beginning of the previous
time step, and by next(A) its position at the beginning of the next time step.

A given robot is either active or settled. All robots are initially active, and eventually
become settled at the end of some time step. Settled robots never move from their
current position.

A unique vertex s in R is designated as the source or “door” vertex. If at the
beginning of a time step there is no mobile robot at s, a new robot emerges at s at the
end of that time step.

Energy and total travel. The “travel” Ti of the ith robot is the number of time steps
t that begin and end with the robot still active. This definition includes steps where
the robot does not change location, since we wish to relate travel to energy expenditure
(e.g., a quadcopter floating or circling in place is still traveling, and consumes just as
much energy). The total travel of the robots is then the sum ∑

Ti over all robots, and
can be seen as the total amount of energy the robots consume before they settle.

5.3 Find-Corner Depth-First Search

We describe a local rule, “Find-Corner Depth-First Search” (Algorithm 5.1), that en-
ables the robots to disperse over a simply-connected region R. As in [HAB+04], the
algorithm has a makespan of 2V − 1 (where V is the number of cells in R, or equiva-
lently, the total area of R when setting every cell to be a unit square). We note that
since at best, robots arrive at s once per two time steps, this is the lowest possible
makespan.

The purpose of FCDFS is to minimize the individual travel and total travel of
the robots. It does this by ensuring that the path of a robot from s to its eventual
destination (the vertex at which it settles) is a shortest path in R.

The idea of the algorithm lies in the distinction between a corner and a hall (see
Figure 5.1 and Figure 5.2):

Definition 5.3.1. A vertex v of a grid environment R is called a corner if either:

(a) v has one or zero neighbours in R, or

(b) v has precisely two neighbours u and u′ in R, and u and u′ have a common
neighbour w that is distinct from v.

Definition 5.3.2. A vertex v of R is called a hall if it has precisely two neighbours u

and u′, and u and u′ are both adjacent to the same vertex w in Rc.

75

Figure 5.1 Corners. (Blue vertices are walls; vertices in Rc).

Figure 5.2 A hall.

Essentially, halls are vertices in R that are blocked by walls on two sides, and have
an additional wall w diagonal to them. Corners are either dead-ends, or vertices in R

that are blocked by walls on two sides, and have a vertex w of R diagonal to them. If
v is either a hall or a corner, w is called the “diagonal” of v, and is denoted diag(v).
We observe that diagonals are uniquely specified.

Robots executing FCDFS attempt to move only in ‘primary’ and ‘secondary’ di-
rections, where the secondary direction is always a 90-degree clockwise rotation of the
primary direction (for example ”up and right”, ”right and down”, or ”down and left”).
They may only change their primary direction once they arrive at a hall, and they
become settled once both their primary and secondary directions are blocked and they
are at a corner.

For the rest of this section, let R(t) be the environment R at time t, i.e. the initial
environment R where we have removed from R every vertex that is occupied by a settled
robot at the beginning of time step t.

A robot at time t is searching for the corners and halls of R(t). However, robots
executing FCDFS are unable to distinguish between active robots, and walls or settled
robots. Hence, it is important to design the algorithm so that a robot never misidentifies
a corner of R(t) as a hall, or vice-versa, due to an active robot (rather than a wall or
a settled robot) occupying the diagonal and being identified as an obstacle. For this
purpose we enable our robots to remember their two previous locations. We will show
that an active robot can occupy the diagonal of a corner at time t if and only if its
predecessor occupied this diagonal at time t − 2, thereby allowing the predecessor to

76

distinguish between ’real’ and ’fake’ halls.

Algorithm 5.1 Find-Corner Depth-First Search
Let v be the current location of A.
if every neighbouring vertex of v is occupied then

Settle.
else if A has never moved then ▷ Initialization

Search clockwise, starting from the ”up” direction, for an unoccupied vertex, and
set primary direction to point to that vertex.
end if
if A can move in its primary direction then

Step in the primary direction.
else if A can step in secondary direction then

Step in the secondary direction.
else ▷ We are at a corner or a hall.

if prev(prev(A)) = diag(v) ∨ diag(v) is unoccupied then
Settle.

else ▷ We think we are at a hall.
Set primary direction to point to the neighbour of v different from prev(A).
Move in the primary direction.

end if
end if

5.3.1 Analysis

In this section we give an analysis of the FCDFS algorithm. To start, we require some
lemmas about corners and halls.

Lemma 5.3.3. Let c be a corner of a simply connected region R. Then:

(a) R− c is simply connected.

(b) For any two vertices u, v in R − c, the distance between u and v is the same as
in R.

Proof Removing c does not affect connectedness, nor does it affect the distance from
u to v, as any path going through c can instead go through diag(c). Further, as c is
adjacent to two walls, no path in R − c can surround it, so R − c also remains simply
connected. ■

An articulation point (also known as a separation or cut vertex) is a vertex of a
graph whose deletion increases the number of connected components of the graph (i.e.
disconnects the graph) [Die17].

Lemma 5.3.4. The halls of a simply connected region are articulation points.

77

Proof Let h be a hall of a simply connected region R. Suppose for contradiction that
h is not an articulation point, and let u and u′ be the neighbours of h. Then there is a
path from u to u′ that does not pass through h. Let P be this path, and let P ′ be the
path from u to u′ that goes through h.

When embedded in the plane in the usual way, R is in particular a simply connected
topological space. The hall h is embedded onto a unit square, whose four corners each
touch a wall: three touch the two walls adjacent to h, and the fourth touches diag(h).
Joined together to form a closed curve, the paths P and P ′ form a rectilinear polygon
that must contain at least one corner of h in its interior. Hence, the curve PP ′ contains a
part of Rc–and we get a contradiction to the simply connected assumption. (See Figure
5.3).

Figure 5.3 The two possibilities for PP ′.

Lemma 5.3.4 indicates that R can be decomposed into a tree structure T (R) as
follows: first, delete all halls of R to form separated connected components. Let
C1, C2, . . . , Cn be these components, where Ci also includes its adjacent halls. Let-
ting the vertices of T (R) be these components, connect Ci and Cj by an edge if they
share a hall. We set C1 to be the root of the tree, and the connected component
containing the door vertex s.

By Lemma 5.3.3, assuming our robots correctly stop only at corners, R(t) can in
the same manner be decomposed into a tree T (R(t)) whose connected components are
C1(t), C2(t), These components are each a sub-graph of a connected component of
T (R).

Let A1, A2, . . . denote the robots that emerge from s in the order of arrival. In the
next several propositions, we make the no fake halls at time t assumption: this is the
assumption that for any t′ < t, at the end of time step t′: robots can only become
settled at corners of R(t′), and can only change primary directions at halls of R(t′). We
do not include the initialization of a primary direction when a robot arrives at s. We
will later show that the “no fake halls” assumption is always true, so the propositions
below hold unconditionally.

78

Proposition 5.3.5. Assuming no fake halls at time t, a robot Ai active at the beginning
of time step t has traveled an optimal path in R from s to its current position.

Proof By the assumption, the only robots that became settled did so at corners. Con-
sequently, by Lemma 5.3.3, R(t) is a connected graph, and there is a path in R(t) from
s to Ai. The path Ai took might not be in R(t), but whatever articulation points (and
in particular halls) Ai passed through must still exist, by definition.

Since Ai is active at the beginning of time t, by the algorithm, it has taken a step
every unit of time up to t. Until Ai enters its first hall, and between any two halls Ai

passes through, it only moves in its primary and secondary directions. This implies
that the path Ai takes between the halls of R(t) must be optimal (since it is optimal
when embedded onto the integer grid Z2). We note also that Ai never returns to a hall
h it entered a connected component of R(t) from, since the (possibly updated) primary
direction pulls it away from h.

We conclude that Ai’s path consists of taking locally optimal paths to traverse the
connected components of the tree T (R(t)) in order of increasing depth. Since in a tree
there is only one path between the root and any vertex, this implies that Ai’s path to
its current location is at least as good as the optimal path in R(t). By Lemma 5.3.3,
b, this implies that Ai’s path is optimal in R. ■

Corollary 5.1. Assuming no fake halls at time t,

(a) For all i < j, the distance between the robots Ai and Aj, if they are both active
at the beginning of t, is at least 2(j − i)

(b) No collisions (two robots occupying the same vertex) have occurred.

Proof For proof of (a), note that at least two units of time pass between every arrival
of a new robot (since in the first time step after its arrival, a newly-arrived robot blocks
s). Hence, when Aj arrives, Ai will have walked an optimal path towards its eventual
location at time t, and it will be at a distance of 2(j− i) from s. This distance is never
shortened up to time t, as Ai will keep taking a shortest path.

(b) follows immediately from (a). ■

From Corollary 5.1 and determinism, we get:

Lemma 5.3.6. Suppose Ai is active at the beginning of time step t. Assuming no fake
halls at time t, next(Ai+1) = prev(Ai).

We note that Lemma 5.3.6 also indicates that if at the beginning of time step t, Ai

is active, then Ai+1 will be active at the beginning of time step t + 1.
We can now show that the “no fake halls” assumption is true, and consequently,

the propositions above hold unconditionally.

79

Proposition 5.3.7. For any t, at the end of time step t: robots only become settled
at corners of R(t), and only change primary directions halls of R(t) (not including the
primary direction decided at initialization).

Proof The proof of the proposition is by induction. The base case for t = 1 is trivially
true.

Suppose that up to time t− 1, the proposition holds. Note that this means the “no
fake halls” assumption holds up to time t, so we can apply the lemmas and propositions
above to the algorithm’s configuration at the beginning of time t.

We will show that the proposition statement also holds at time t. Let Ai be an
active robot whose location at the beginning of t is v. First, consider the case where
v = s. The algorithm only enables Ai to settle at s if it is surrounded by obstacles at
all directions. Any obstacle adjacent to Ai must be a wall of R(t) (as any active robot
must be at a distance at least 2 from Ai, due to Corollary 5.1). Hence, if Ai settles at
s, s is necessarily a corner, as claimed.

We now assume that v ̸= s. We separate the proof into two cases:
Case 1: Suppose Ai becomes settled at the end of time step t. Then by the al-

gorithm, at the beginning of t, Ai detects obstacles in its primary and secondary di-
rections. These must be walls of R(t) due to Corollary 5.1, so v is either a corner
or a hall of R(t). Since Ai settled, we further know that either diag(v) is empty, or
prev(prev(Ai)) = diag(v). In the former case, v is a corner of R(t). In the latter case,
we know from Lemma 5.3.6 and from the fact that no collisions occur that the only
obstacle detected at diag(v) is Ai+1, which is an active robot, so v is again a corner of
R(t). In either case a corner is detected and the agent is settled.

Case 2: Suppose Ai changed directions at the end of time step t. Then it sees two
adjacent obstacles, and an obstacle at diag(v). As in case 1, we infer that v is either
a corner or a hall. If it is a corner, then diag(v) is an active agent. By Corollary 5.1,
it is either Ai+1 or Ai−1. It cannot be Ai+1, as then Ai’s position two time steps ago
would have been diag(v), so it would become settled instead of changing directions. It
cannot be Ai−1, as diag(v) is closer to s than v, and Ai−1 has arrived earlier than Ai,
and has been taking a shortest path to its destination. Hence, diag(v) cannot be an
active agent, and v must be a hall as claimed. ■

We have shown that the no fake-hall assumption is justified at all times t, hence we
can assume that the propositions introduced in this section hold unconditionally.

Proposition 5.3.8. Let V be the number of vertices of R. At the end of time-step
2V − 1, every cell is occupied by a robot.

Proof Propositions 5.3.5 and 5.3.7 imply that robots take a shortest path in R to their
destination. That means that as long as the destination of a robot is not s itself, robots
will step away from s one unit of time after they arrive. Until then, this means that
robots arrive at s at rate one per two time steps.

80

Every robot’s end-destination is a corner, and by the initialization phase of the
algorithm, the destination is never s unless s is completely surrounded. Since there are
no collisions, there can be at most V robots in R at any given time. By Lemma 5.3.3,
robots that stop at corners keep R connected. Furthermore, every R(t) is a rectilinear
polygon, so unless it has exactly one vertex, it necessarily has at least two corners.
This means that the destination of every robot is different from s unless s is the only
unoccupied vertex. Hence, a robot whose destination is s will only arrive when s is the
only unoccupied vertex, and this will happen when V robots have arrived, so after at
most 2V −1 time steps. This is exact, since it is impossible to do better than 2V −1.■

Propositions 5.3.8 and 5.3.5, alongside the “no fake halls” proof, complete our anal-
ysis. They show that FCDFS has a makespan of 2V − 1, and also that the durations of
activity of the individual robots are optimal, since every robot travels a shortest path
to its destination without stopping.

As every vertex must be occupied for the dispersal to end, a trivial lower bound on
the total travel for any dispersal algorithm is ∑v∈R dist(s, v). Since this is achieved by
our algorithm, total travel is also minimized.

In practice, the energy savings of our algorithm are dependent on the shape of
the environment R. We take as a point of comparison the Depth-First Leader-Follower
algorithm of Hsiang et al. [HAB+04]. On a 1-dimensional line of length n, both FCDFS
and DFLF require the same total travel, O(n2), so no improvement is attained. In
contrast, on an n-by-n square grid, DFLF requires total travel O(n4) in the worst case,
and FCDFS requires O(n3) - significantly less. This is because the DFLF strategy
starting from a corner might cause the leader, A1, to “spiral” inwards into the grid,
covering every one of its n2 vertices in n2−1 moves; the subsequent robot Ai will make
n2 − i moves, for a sum total of O(n4). FCDFS, on the other hand, distributes the
path lengths more uniformly. Note that both algorithms take the exact same amount
of time to finish.

Where is it best to place s? If we want to minimize the total travel, by the formula
given above, the best place to place s is the vertex of R that minimizes the sum of
distances ∑v∈R dist(s, v) (there may be several). This is the discrete analogue of the
so-called Fermat-Toricelli point, or the “geometric median” [KV97].

5.3.2 The number of persistent states

As in previous works on uniform dispersal, our robots are finite-state automatons with
O(1) persistent memory bits or states that carry over between time steps. The require-
ment of finite memory is important, as it allows for scalability: the robots’ memory
need not scale with the size or complexity of the environment.

There has been some interest in the question of just how little memory one can
get away with. It has been shown that oblivious robots - robots with just one persis-
tent state - are incapable of solving the dispersal problem, even with infinite visibility

81

Algorithm 5.2 5-bit FCDFS
Let v be the current location of A.
if v has no unoccupied neighbours then

Settle.
b3b4b5 ← 011

else if b4b5 = 00 then
Search clockwise, starting from the ”up” direction, for an unoccupied vertex, and

set primary direction to point to that vertex.
b4b5 ← 10

end if
if A cannot move in primary or secondary directions then

if v has just one neighbour then
Settle.
b3b4b5 ← 011

else if (b5 = 1 ∧ b3 + b4 = 1) ∨ diag(v) is unoccupied then
Settle.
b3b4b5 ← 011

else
Set primary direction to obstacle-less direction not equal to 180° rotation of

previous direction stepped in (i.e. the neighbour of v we haven’t visited yet; this can
be inferred from b1b2 and b3).

b4b5 ← 10
end if

end if
if b4b5 was not updated at this time step then ▷ i.e. b5 = 1 or time to update b5

b4b5 ← b31
end if
if A can move in its primary direction then

Step in the primary direction.
b3 ← 0

else if A can step in secondary direction then
Step in the secondary direction.
b3 ← 1

else
Settle.
b3b4b5 ← 011

end if

[BDS08]. Consequently, any dispersal algorithm requires some number of persistent
states, and we are interested in implementing our algorithm with as few as possible -
i.e. bringing the robots as close as possible to “obliviousness” of their prior history and
to center their decisions, as much as possible, on their current position and frame of
reference.

Moreover, Algorithm 5.1 required the robots to remember their previous locations
relative to their current location and to be able to use them as points of comparison.
The 5-bit implementation shows how this could be done through remembering only
the previous two relative directions of motion. A robot is then required only to know

82

whether there are obstacles at the four cardinal directions (up, down, left, right), and
at its diagonal, which is always at a 135° degree rotation from the primary direction.
This simplifies the localization computations.

We implemented a 5-bit or 25-state version of our algorithm on a simulator (see
Algorithm 5.2). A robot’s state is described by bits b1b2b3b4b5. All bits are initially 0.
b1b2 describe the primary direction (one of four), and b3 tells us whether the previous
step was taken in the primary direction (if b3 = 0) or in the secondary direction (if
b3 = 1). b4b5 is a counter that is reset to 10 upon entering a hall or one step after
initialization, and thereafter is equal to ∗1, where ∗ is a bit that tells us whether we
walked in the primary or secondary direction two steps ago (by copying b3). A robot
that detects an obstacle at its diagonal interprets its position as a fake hall (i.e. a
corner) as long as b5 = 1 and b3 + b4 = 1, that is, as long as at least one time step
passed since the last hall, and our previous position was diagonal to us. In order to
conserve memory, our robots do not strictly speaking have a “settled” state. Instead,
once a robot determines it is in a corner (and so needs to settle), it sets b3b4b5 to 011,
indicating that it visited its diagonal–this causes it to never move again.

5.3.3 The impossibility of minimizing total travel for general grid en-
vironments

We saw that there is a local rule that minimizes total travel for simply connected grid
environments. In this section we show that, for robots with finite visibility, there is no
local rule that universally minimizes total travel for all connected grid environments.

Let r be the visibility range of the robots. Consider the grid environment in Figure
5.4 (not drawn to scale). It connects a set of 10r columns of width 1 spaced 2r cells
apart. The bottom row has total length 20r2. Most of the columns are dead-ends
and have a height of 30r2. The first column and an additional column connect to the
top row, and have height 30r2 + 1. Label the grid environment where this additional
column is the kth column G(k). The door s is at the bottom left.

It is readily seen that the total travel required by an optimal solution for any
environment G(k) is ∑v∈G(k) dist(s, v), where s is the door of G(k) (let a line of robots
going up the first column fill the top row, and let robots going to the right fill the other
columns).

Proposition 5.3.9. Let ALG be a local rule for uniform dispersal of robots with
visibility range r. There is an environment G(k) for which the total travel of ALG is
at least ∑v∈R dist(s, v) + 1.

Proof (Sketch) We consider the actions of rule ALG on the grid environment G(k).
We do not specify the value of k yet.

As before, label the robots emerging at s A1, A2, . . . in their order of arrival. Since
A1 cannot distinguish between the up and right directions upon arrival at s (any distinct

83

Figure 5.4 The construction G(k).

feature of the environment is at distance at least r + 1 and hence is invisible), we can
assume without loss of generality that it steps up (if it steps right, simply rotate and
reflect G(k)).

Assume for contradiction that the total travel of ALG is T =
∑

v∈G(k) dist(s, v).
This assumption implies that every robot travels a shortest path to its settlement
destination. In particular, A1 must have precisely dist(A1, v1) travel, where v1 is the
destination at which A1 chooses to settle.

We note the following facts:

1. Once A1 stepped up, it has committed to stepping up and right until reach-
ing v1, as circling in place or going in a third direction increases its travel past
dist(A1, v1), causing the total travel of ALG to be greater than T–a contradic-
tion.

2. v1 cannot be a vertex in the first column or in the top row except the top vertex
of column k or one vertex to its left, as should v1 not equal those, settling there
would block off the path to the top row going through the first column, and force
other robots to travel to the top row through column k. This is sub-optimal, and
causes the total travel to increase beyond T–a contradiction.

3. v1 cannot be any vertex in the kth column other than the top of the kth column,
as this would require A1 to step downwards.

(*) From (1)-(3) we conclude that v1 must equal precisely the top vertex of the kth
column or one vertex to its left.

Up to the time when A1 reaches the top row, none of the ends of the other columns
have been seen, so ALG will run the same regardless of the value of k. Since total

84

travel is assumed to be optimal, no robot can block s for more than one time step, so
by the time A1 reaches the top row, there will have been created at least 4r robots.
Each of these 4r robots must have already entered one of the columns or settled, since
they travel optimal paths to their destination, and the total length of the bottom row
is 20r2, whereas 30r2 time must have passed for A1 to reach the top.

As there are 10r columns, there must exist a column that none of the robots
A1, . . . , A4r have entered. Set the value of k to equal this column.

When A1 reaches v1, the above indicates that any other robot currently present in
the kth column (if there are any) arrived at least 2 ·4r time steps after A1. Therefore it
is at distance at least 8r from A1, meaning that there is a space of 6r vertices in column
k that no robot has seen yet. This indicates that ALG must make the same decision
for A1 whether these vertices exist or not. However, if any one of these vertices does not
exist, then column k is not connected to the top row, indicating that A1 cannot settle
at the top of the kth column or to its left, else it will block off part of the environment.
We arrived at a contradiction to (*).

We conclude that there is an environment G(k) where the total travel of ALG is
greater than the optimum, so ALG is sub-optimal.

By adding more columns to the G(k) construction and increasing the height of
the columns, we can force A1 to go down more and more steps, causing the difference
between the optimal total travel and the total travel of ALG to be arbitrarily large.

Proposition 5.3.9 only makes the assumption of limited visibility. It holds even
assuming the agents have global communication, infinite memory, and are aware of
each others’ positions at all times.

We note that we did not exclude the possibility of a local rule that minimizes the
maximal individual travel. Furthermore, we did not exclude the possibility of a rule
that minimizes total travel when pauses are not counted.

5.4 Simulations, comparisons, and alternative strategies

We verified and animated our algorithm by simulating it on our robot simulator. Fig-
ures 5.5 and 5.6 show four stills from a run of the algorithm on two different environ-
ments. Figure 5.7 shows a FCDFS deadlock scenario in an environment that is not
simply connected: the halls constantly redirect the robots, forming a cycle. The door
vertex has mistakenly blocked itself off, due to the robots exiting from it mistaking the
robots in a cycle for obstacles.

We experimented with two variants of FCDFS that are similarly optimal. FCDFS
assumes robots are initialized with a common notion of up, down, left and right, but
this assumption is unnecessary if we let robots settle in place as soon as they reach a
corner (in FCDFS they keep moving if they can). This modified strategy is illustrated
in Figure 5.8, where robots randomly choose their initial direction. This creates a more

85

Figure 5.5 A simulation of FCDFS. The blue blocks are walls. The arrows indicate
the location and primary direction of the robots, and the diamonds are settled robots.
Rather than block active robots, the settled robots form halls to enable the swarm to
explore more of the environment.

“symmetric”-looking dispersal. The strategy shown in Figure 5.9 is more significantly
different: in it, rather than stick to their secondary and primary directions, robots
attempt to scale the boundary of the environment with a “left hand on wall” clockwise
orientation, until they hit a corner or a wall. Both of these variants achieved the same
makespan and total travel as FCDFS, though they are visually distinct.

Empirically, we compared the performance of FCDFS to the performance of our im-
plementation of the DFLF and BFLF algorithms of [HAB+04] (adapted to our slightly
different model) over a number of simply-connected environments, measuring the total
travel and maximal individual travel (Table 5.1). Note that though all algorithms are
deterministic, some local decisions are not fully specified in [HAB+04], hence different
implementations may result in slightly different performance, though asymptotically

86

Figure 5.6 A simulation on a different environment. Note how the trail of robots
always forms a shortest path to its current front.

every implementation will perform the same. We let our robots decide between arbi-
trary local decisions at random, averaging performance over several re-runs.

Only for the sake of this comparison, we elected to exclude time steps where robots
are active but do not change location, as such intermediate pauses are not counted
in [HAB+04]. FCDFS is optimal regardless, and factoring these in leaves the DFLF
and FCDFS columns unchanged, since such pauses never occur during their execution.
However, including pauses causes the maximal travel of BFLF to become extremely
large. Hence, Table 5.1 shows that BFLF is good at reducing the number of location
changes of a robot, but in many applications (e.g. when robots are quadcopters) its
energy consumption is very high compared to FCDFS.

87

Figure 5.7 A deadlock scenario in environments that are not simply connected.

Figure 5.8 Multi-directional dispersal strategy.

DFLF BFLF
(excl. stops) FCDFS

30x30 Grid 237984 (460) 16323 (50) 13620 (32)
Fig. 5 Environment 16139 (126) 6742 (50) 5909 (38)
Fig. 6 Environment 100419 (296) 39576 (112) 35103 (99)
Fig. 9 Environment 50889 (190) 7283 (39) 6600 (35)

Table 5.1: A comparison of total travel and maximal individual travel over different environ-
ments (excluding pauses). Entries are in the form total travel (maximal travel). See Figures 5,
6, 9 for the specific environments used.

88

Figure 5.9 “Left hand on wall” strategy.

5.5 Discussion

A robotic swarm must take into account the energy capacity of the individual. We
discussed the problem of minimizing travel, hence energy expenditure, in the uniform
dispersal problem for simply connected grid regions. We showed the existence of a
local strategy that minimizes total and individual travel for the case of a single source
vertex. We showed also a non-existence result for such strategies in the case of general
grid environments.

Several extensions of our work can readily be considered. First, as our algorithm
deals only with the single door case, it is desirable to find an energy-efficient dispersal
algorithm for the case of multiple doors from which robots arrive independently.

Next, synchronicity is a strong assumption, enabling every robot to proceed to its
destination without ever being blocked by another robot. To extend our work to less
controlled settings, we may assume an asynchronous time scheme–for example, allow a
probability q that an agent fails to activate at a given time step. We cannot expect a
makespan- and total travel-optimal algorithm to exist in such settings, but we anticipate
relatively effective strategies might exist. As a way to proceed, though our algorithm
makes the powerful assumption of synchronicity, the strategy of finding corners and not
stopping at halls seems general, and could possibly be adopted for the asynchronous
case as well.

Finally, our algorithm requires the environments to be simply-connected orthogo-
nal environments: it would be interesting to see an algorithm that works for broader
scenarios, or in the opposite direction, results regarding the non-existence of efficient
algorithms for such scenarios under the stringent computational assumptions we made.

89

90

Chapter 6

Swarm Robotics II: Uniform
Dispersion With Crash-prone
Robots

In Chapter 5 we described an ant-like energy and time-optimal algorithm for swarm
uniform dispersion over simply connected grid environments. This algorithm operated
under two idealized assumptions: (i) robots activate synchronously in each time step
and (ii) robots are not subject to memory errors or crash faults. In the current chapter,
which is based on the paper [AB20], we revisit the uniform dispersal problem under a
less forgiving set of assumptions. Our goal is to find an algorithm that can complete
uniform dispersal in a reasonable time span (but without necessarily minimizing energy)
assuming robots activate asynchronously and can suddenly crash and disappear from
the environment. Additionally, unlike Chapter 5 where we assumed the environment
was a simply connected grid graph, here we assume the environment the robots traverse
is represented by an arbitrary, a priori unknown graph G.

Our proposed solution to both the problem of asynchronous coordination and of
crashing is a dual role algorithm wherein each mobile robot is both an explorer and,
once it settles somewhere, a stationary node that helps other agents navigate the region.
This idea draws upon the bio-inspired concept of stigmergy–communication via the en-
vironment [KES01]. In nature, social insects often communicate by leaving pheromones
or other kinds of marks inside the environment. Our implementation of stigmergy uti-
lizes the agents themselves as a medium to change the state of the environment, in
the form of agent nodes that after settling become a part of the environment. Our
dual role approach enables robots which are displaced (e.g., due to strong winds or
long stretches of time where they are not activated) to quickly find their bearing and
resume executing their algorithm, and also enables the swarm to be resilient to crashes
in the mobile agent layer.

The benefits of agent-node duality in swarm-robotic coverage tasks are not limited

91

to asynchronicity and crash mitigation. Recalling Chapter 5, we would be remiss not
to mention our joint work with Ori Rappel, [RAB22] (the full version of which is not
included in this dissertation), where we build upon the concept of two- layer swarms to
create highly energy efficient algorithms for uniform dispersion by equipping stationary
agent nodes with the ability to send back-propagating signals to other agent nodes.

Such ideas are outside our current scope: in this chapter, we focus on a highly
straightforward, DFS-esque uniform dispersal algorithm which can be described in 9
lines of code (Algorithm 6.1). Despite the algorithm’s simplicity, its rigorous analysis
turns out to be fairly subtle. The analysis is crucially reliant on a lengthy reduction
to the totally asymmetric simple exclusion process (see the Preliminaries) and non-
elementary results from the TASEP literature. We would be highly interested in a
more elementary (but still rigorous) analysis and pose this as an open problem to any
interested reader.

6.1 Introduction

Swarms are often claimed to be highly fault-tolerant, as redundancy and sheer numbers
can enable the swarm to go on with its mission even if many robots malfunction [WN06].
However, as the size of a robotic fleet grows, so too does the opportunity for error.
Specifically, three different complications that arise in multi-robot systems are further
exacerbated in the swarm setting:

Asynchronicity. As the number of robots grows, coordinating the robots’ actions
becomes a formidable task, as their actions and internal clocks can become highly
unsynchronized.

Crashes. We cannot expect to release a huge swarm of simple robots to an unknown
environment without the occurrence of hardware or software faults that may cause
robots to crash.

Traffic. To avoid collisions, we do not wish for there to be too many robots crowding
a given area, and so mobile robots should maintain safe distances from each other. In
restricted physical environments, such requirements cause traffic delays, as robots must
wait for other robots to move away before entering a target location.

Such challenges are discussed as a central direction of research for swarm robotics
in [Pel05]. If the number of errors scales with the number of robots, are swarms “worth
the trouble”? The purpose of this chapter is to give a perspective on this question via a
formal mathematical analysis. We study, in an abstract setting, the ability of a simple
local rule to achieve uniform dispersal in the presence of crashes and asynchronicity.
We are specifically interested in how the frequency of crashes affects the time to mission
completion.

We first describe a rule of behaviour for swarms that is capable of achieving uni-
form dispersal which uses two types of agents, both of which can be present in the
same location. Using this algorithm, we show that a swarm can complete its mission

92

quickly and reliably in a priori unknown discrete environments, even in the presence of
asynchronicity and frequent crashes. Hence, we claim that in our setting, many robots
can win against many errors. In the spirit of swarm robotics, the algorithm relies only
on local information to dictate robots’ actions.

Our swarm consists of a large reservoir of simple, anonymous, identical, and au-
tonomous mobile robots that enter the environment over time via a source location s.
The robots move across a discrete environment represented by an a priori unknown
graph G whose vertices represent spatial locations. The robots gradually expand their
coverage of the environment by occupying certain locations and assisting other nearby
robots in navigational tasks using a local, indirect communication scheme.

The swarm’s robots have two modes: mobile and settled. The settled robots act
as “nodes” or “beacons” of the current coverage of the graph environment, and the
mobile robots move between locations with settled robots until they can find a new
location where they themselves can settle. The settled ‘robot nodes’ are capable of
pointing to (“marking”) a single neighbouring location where there is another settled
robot. “Marking” is understood to be a generic capability of the robots and could
be accomplished by many different technologies, such as local radio communication or
visual sensing; we refer to the Related Work section for possible implementations.

As more and more mobile robots become settled, their marks serve as a naviga-
tional network of the environment that is utilised by the remaining mobile robots. The
mobile robots are capable of sensing the number of robots in neighbour locations, and
sensing when a settled robot is pointing to (marking) their location. They rely only
on this information to make decisions. Hence, they operate in an ant-like, GPS-denied,
low memory setting, meaning they act based only on local communications and local
geographic features. The robots are tasked with settling at every vertex of G, and
constructing an implicit spanning tree of G via the settled robots and their pointer
marks.

There are no restrictions on G as long as it is connected. In principle, different
robots need not even agree on the graph representation of their environment for our
algorithm to work (e.g., in case they gradually build it from local sensory data), as
the settled robots gradually construct a spanning tree which all robots agree on and
use to move between locations. We assume, for simplicity, that they share the same
representation.

Physical constraints and asynchronicity. We model the mobile robots as acti-
vating repeatedly at stochastic, independent exponential waiting times of rate 1. When
a robot activates, it may move or move-and-settle at a nearby location (once a robot
settles, it remains stationary). We assume the physical constraint that any given loca-
tion may contain no more than a single mobile robot and a single settled robot. Due to
asynchronous activation times, frequent traffic obstructions occur as robots block each
other off from progressing.

This model of asynchronicity and limited vertex capacity in a graph environment

93

is motivated by the totally asymmetric simple exclusion process (TASEP) in statistical
mechanics. There is an extensive literature on this process as a model for a great variety
of transport phenomena, such as traffic flow [CSS00] and biological transport [CMZ11].
Rigorous exact and asymptotic results for TASEP are known [Joh00; TW09], and
our analysis technique shall be to compare our swarm’s performance to a two-layered
TASEP-like process. Since our robots are mostly in a state of ”traffic flow” (waiting
for other robots to move), references such as [CSS00] suggest that our model, despite
being inherently idealized, in fact captures many of the relevant traffic phenomena that
will occur in real life implementations.

Adversarial crashing. Similar to, e.g., [JCMP17], we consider a risky traversal
model where robots may crash whenever they try to move across an edge. We assume
robots remain safe when not moving, as remaining put is less risky than travelling (in
fact, we need just the weaker assumption that settled robots, which never move, are
safe). To facilitate analysis, we assume crashed robots disappear from the environ-
ment. This assumption is applicable when such robots can be manoeuvred around or
pushed aside, or we may consider crashed air-based robots falling to the ground during
exploration of an environment. Alternatively, in a ground robot scenario, we can with
foresight expand vertex sizes to be big enough such that vertices can contain a small
number of crashed robots in addition to the two active robots (and such local crashed
robots are then bypassed using, e.g., local collision avoidance).

We assume that the number of crashes that occur is bounded by the current time
t, and a parameter c which reflects the frequency at which crashes occur over time.
When c is close to 1, the vast majority of robots that enter the environment will crash
before achieving anything.

Besides these limitations, we assume nothing more about the crashes that occur. In
particular, a virtual adversary may choose crashes so as to be as obstructing as possible.

Results. We describe a local rule of behaviour (Algorithm 6.1) that can achieve
uniform dispersion, even in the presence frequent crashes and traffic obstructions. The
rule is easy to understand and implement and is well-suited for a swarm of simple robots,
mimicking a kind of branching depth-first search. In many mobile robot systems one
wishes to construct a spanning tree of the environment for purposes of mapping, routing
or broadcasting [AMZ06; AHK06; Bro89; DP12; GR01]. Our rule achieves this as well,
by having robots act as nodes of the tree, and making them aware of their immediate
descendants. Our goal is to study how crashes, asynchronicity, and traffic affect the
swarm’s performance under this rule of behaviour.

We prove that our robots are able to complete their mission in time linear in the size
of the environment, and that performance degrades gracefully (by a factor (1 − c)−1)
with frequency of crashes. Given our assumptions and algorithm, it is not surprising
that the robots can complete the dispersion assuming some crashes; rather, we show
that even with many frequent crashes, the robots can still do so efficiently.

Specifically, let n be the number of vertices in the environment G. We prove that

94

dispersal completes before time 8 · ((1 − c)−1 + o(1))n asymptotically almost surely
(meaning with probability approaching 1 as n grows)–a worst-case bound on perfor-
mance. No dispersal algorithm can complete in less than O(n) expected time, since
this is the time it takes to even explore n vertices, so when there are no crashes (but
still there is traffic and asynchronicity) this bound is asymptotically tight. For, say,
c = 0.5, we expect up to (roughly) 50% of robots to crash before achieving anything,
and our analysis says that therefore the swarm will take twice as long to achieve dis-
persal. This seems intuitive, but consider that the robots that eventually crash are
(uselessly) present in the environment in the time leading to the crash, blocking other
robots from entering or progressing. The analysis says that nevertheless, the ability of
the rest of the swarm to achieve its goal is not disproportionately worsened.

To the best of our knowledge, with or without crashes, we are the first to consider
a non-synchronous setting for the uniform dispersal problem where time to completion
can explicitly be bounded, hence also the first to give explicit performance guarantees
in a non-synchronous setting. In an asynchronous as opposed to a synchronous setting,
there are many more possible configurations that the robots might exist in, which
makes the analysis more difficult. We believe the TASEP references and techniques
from statistics [Joh00; TW09; CSS00] might be of general interest for tackling these
kinds of topics.

Our analysis extends also to a synchronous time setting, and to the case where
robots enter the environment from multiple locations. Multiple entrance locations result
instead in the robots constructing instead an implicit spanning forest. In both these
settings, dispersion completes faster. The bound on performance we derive for the
synchronous case is exact.

Finally, we confirm our findings by numerically simulating our system in a number
of environments and measuring performance.

6.1.1 Related work

As mentioned in the previous chapter, uniform dispersal was introduced by Hsiang et
al. in [HAB+04] for discrete grid environments of connected pixels (but their work can
be extended to arbitrary graph environments). They considered a synchronous time
setting where robots are allowed to send short messages to nearby robots, and showed
time-optimal algorithms for this setting. Many variations have since been studied.
Barrameda et al. extend the problem to the asynchronous setting with no explicit non-
visual communication [BDS13; BDS08]. Recent works include dispersal with weakened
sensing [HL17a], dispersal in arbitrary graph environments [KA19]. Our model differs
from previous work in several points, including the presence of crashes, the two layers,
and the ability to mark neighbours. Marking is weaker than the radio communication
available to robots in [HAB+04] that enables robots to transfer many bits of data
locally, but stronger than the indirect, visual communication assumed in some other

95

Reference Environment type Time setting Communication Makespan Crashes
[HAB+04] Arbitrary Synch. Radio O(n) x
[AB19b] Simply connected grid Synch. Visual O(n) x
[HL17a] Grid Synch. Visual O(n) x
[BDS08] Simply connected grid Asynch. Visual undefined x
[BDS13] Grid Asynch. Radio undefined x
This chapter Arbitrary Stochastic Asynch. Marking O(n) ✓

Table 6.1: A comparison of works on uniform dispersal.

works.
Because of differences in the settings, assumptions, and constraints, quantitative

comparison of works on uniform dispersal is very difficult. Table 6.1 gives a rough,
non-exhaustive overview of some differences, such as the supported kinds of environ-
ments (grid environment, hole-less grid environment, or arbitrary graph environment),
synchronous versus asynchronous time, expected makespan (i.e., how long it takes the
robots to complete their mission), and whether crashes are considered in the model.

Robotic coverage, patrolling, and exploration with adversarial interference, as well
as crashes, have been studied in different problem settings from our own. Agmon and
Peleg studied a gathering problem for robots where a single robot may crash [AP06], and
gathering with multiple crashes was later discussed by Zohir et al. in a similar setting
[BDT13]. Robotic exploration in an environment containing threats has been studied
in [YAK13; YAK15]. Moreover, adversarial crashes of processes are often studied in
general distributed algorithms (e.g., [DFGT11]). Differing from many of these works,
we study a situation where the number of crashes scales with the mission’s complexity
(the time it takes to cover the environment), and where even the vast majority of robots
may crash. However, to enable this, we assume access to a huge reservoir of robots
waiting to replace crashed robots–i.e., a robotic swarm.

A fascinating introduction to TASEP-like processes and their connection to other
fields is [KK10].

6.2 Model and System

We consider a swarm of mobile robotic agents performing world-embedded calculations
on an unknown discrete environment represented by a connected graph G. The vertices
of G represent spatial locations, and the edges represent connections between these
locations, such that the existence of an edge (u, v) indicates that a robot may move
from u to v.

We assume an infinite collection of robots (also referred to as ‘agents’) attempt to
enter G over time through a source vertex s ∈ G. The robots are identical and execute
the same algorithm. They begin in the mobile state, and eventually enter the settled
state. Settled robots are stationary, and are capable of marking a neighbouring vertex

96

that contains another settled robot. Mobile robots move between the vertices of G and
sometimes crash while in motion. They are oblivious and ant-like, deciding where to
move based only on local information provided by their sensors, i.e., the number of
robots at neighbouring vertices, and whether any of the neighbouring settled robots
mark their current location. Each vertex has limited capacity: it can contain at most
one settled and one mobile robot.

Mobile robots are only allowed to move to a neighbouring vertex when they are
activated. Each robot, including robots outside G, reactivates infinitely often and
independent of other robots, at random exponential waiting times of mean 1.

When s contains less than two robots, robots from outside G attempt to enter it
when they are activated. It is convenient to give the robots arbitrary labels A1, A2, . . .

and assume that Ai cannot enter s before all robots with lower indices entered or
crashed. This assumption makes the analysis simpler, but the performance bound we
prove in this chapter holds also for the entrance model where robot entrance depends
only on which robot is activated first. Hence, whenever the current lowest-index robot
outside of G activates and there is no mobile robot at s, it moves to s. If s is com-
pletely empty, the robot settles upon arrival and becomes the root of the spanning tree.
Otherwise it remains a mobile robot.

We denote by G(t) the graph whose vertices are vertices of G containing settled
robots at time t, and there is a directed edge (u, v) ∈ G(t) if u is marked by a settled
robot at v. The goal of the robots is to reach a time T wherein G(T) is a spanning tree
of the entire environment G. The makespan of an algorithm is the first time T0 when
this occurs.

Crashes are modelled as follows: when a robot Ai is activated and attempts to
enter s or move from u to v via the edge (u, v), occasionally an adversarial event
occurs, causing the deletion of Ai from G. Robots do not crash unless attempting to
move. Hence, mobile robots are volatile but settled robots are safe. This assumption
is somewhat stronger than necessary: our results still hold if mobile (but not settled)
robots are allowed to crash while they stay put, but this tediously lengthens the analysis.
We assume the number of adversarial events before time t is bounded by ct/4 where
0 ≤ c < 1 is some constant. Adversarial events may otherwise be as inconvenient
as possible: we may assume there is an adversary choosing crashes to maximize the
makespan of our algorithm.

Unless stated otherwise, when discussing the configuration of robots “at time t”,
we always refer to the configuration before any activation at time t has occurred.

6.3 Dispersal and Spanning Trees

We study a simple local behaviour (Algorithm 6.1) that disperses robots and incremen-
tally constructs a distributed spanning tree of G. The rule determines the behaviour of
mobile robots whenever they are activated (settled robots merely remain in place and

97

continue to mark their target). We prove that using this rule, the makespan is linear
in the number of vertices of G asymptotically almost surely, and that performance
degrades gracefully with the density of crashes.

Algorithm 6.1 Local rule for a mobile robot A.
Let v be the current location of A in G (if A is outside G, see Section 6.2).
if a neighbour u of v contains exactly one robot, and this robot marks v then

Attempt to move to u.
else if a neighbour u of v contains no robots then

Attempt to move to u and become settled if no crash.
Mark the vertex v.

else
Stay put.

end if

The rule grows G(t) as a partial spanning tree of G. It acts as a kind of depth
first search that splits into parallel processes whenever a mobile robot is blocked by
another mobile robot. Every vertex of the tree G(t) is marked by settled robots at its
descendants. Mobile robots follow these marks to discover the leaves of the current tree
G(t) and expand it. Robots grow the tree by settling at unexplored vertices that then
become new leaves. Our main result is Theorem 6.1:

Theorem 6.1. If for all t the number of adversarial events before time t is allowed to
be at most ct/4, 0 ≤ c < 1, then the makespan of Algorithm 6.1 over graph environments
with n vertices is at most 8((1− c)−1 + o(1))n asymptotically almost surely as n→∞.

Figure 6.1 shows an execution of our algorithm on a grid environment with n = 62
square vertices (white region) and obstacles (blue region). We allowed a naive adversary
to arbitrarily delete at most ct/4 robots before time t, with c = 0.8. This corresponded
to a deletion of 56% of robots that entered the environment before the makespan.
In a more constrained topology (such as a path graph, see Section 6.3.1), the robots
would progress more slowly, and a greater percentage would be deleted. The makespan
(bottom right figure) was 613, consistent with the upper bound of Theorem 6.1. After
the construction of the spanning tree by settled agents completes, robots keep entering
the region until there are two robots at every vertex. This is related to the “slow
makespan”, which we will later define. The slow makespan was 831. See Section 6.4
for more simulations.

6.3.1 Analysis

We study the makespan of Algorithm 6.1. For the sake of flow, some of the more
technical proofs have been moved to the “Analysis details” section (Section 6.5).

98

Figure 6.1 An execution of Algorithm 6.1 on a grid environment. The source is denoted
by a square box in the center. The arrows denote settled robots, and their direction
points to the adjacent location with a settled robot that they mark. Red arrows indicate
a mobile robot is on top of the settled robot (note that by the algorithm, a mobile robot
will never occupy a vertex that does not have a settled robot). The environment is a
priori unknown to the robots, and they construct a spanning tree representation of it
over time.

For the analysis, we will assume that robots from A1, A2, . . . that settle or crash
keep being activated. This is a purely “virtual” activation: such robots of course do
and affect nothing upon being activated. We start with a structural Lemma:

Lemma 6.3.1. G(t) is a tree at all times t with probability 1.

Proof When the first robot enters and successfully settles, G(t) contains only s. No
settled robots are ever deleted, so G(t) can only gain new vertices. Whenever a mobile
robot settles, it extends the tree G(t) by one vertex, connecting its current location v

to G(t) via a single directed edge. By definition, the edge is directed from the vertex
the settled robot marks–which is its previous location–to v. This turns v into a leaf of
G(t). With probability 1 no two robots on G activate at the exact same time, so no
two robots settle the same vertex. Hence G(t) remains a tree. ■

Event orders

We explain how we intend to bound the makespan. Our strategy shall be to use coupling
to compare the performance of Algorithm 6.1 by the performance of different random
processes of robots moving on different structures.

The basic idea is this: whenever we run Algorithm 6.1 on G, we can log the exact
times at which the robots activate, as well as the times adversarial events happen
and which robots they affect. This gives us an order of events S sampled from some

99

random distribution. Note that robots keep activating forever (but these activations
do nothing once the graph is full of robots), so S is infinitely long. We then “re-enact”
or “simulate” S on a new environment (or several new environments) involving the
robots A1, A2, . . . by activating and deleting the robots according to S.

To make things more precise, by “simulating” S on different environments we mean
that we consider the coupled process (G, G2, . . . , Gm) wherein different environments
G, G2, . . . Gm have robots that are paired such that whenever Ai in G is scheduled for
an activation or a deletion according to the event order S (S is simply an infinite list
of scheduled activation and deletion times), the copies of Ai in all the environments
G2, . . . Gm also activate or are deleted. When the copies of Ai are activated they act
according to Algorithm 6.1 with respect to their local neighborhood. Robots entrances
are modelled as usual (Section 6.2), but note that even if Ai manages to enter G

following an activation, its copy might not enter its own environment because in that
environment the entrance is blocked, or there is a lower-index robot waiting to enter.
During Algorithm 6.1’s analysis, we will often be talking about a deterministic event
order S being simulated over different environments. The end-goal, however, is to say
something about the event order S when it is randomly sampled from the execution of
Algorithm 6.1 on G.

The event order S must be a possible set of events that occurred during an execution
of our algorithm on the base graph environment G. This means, due to our model, that
a robot Ai in G will never be scheduled for deletion except at times when it is activated
and attempts to move. However, while simulating S on the environments G2, . . . Gm,
we must be allowed to break the rules of the model: we might delete robots even when
they don’t attempt to move, or while they are outside of the new graph environment.
Whenever we say “for any event order S”, we mean event orders S that could have
happened over G.

In S, define t0 to be the first time A1 activates, t1 to be the first time after t0 that
either A1 or A2 activate, and ti to be the first time t > ti−1 that any robot in the set
{A1, . . . , Ai+1} is activated.

Definition 6.3.2. The times t0 < t1 < t2 < . . . in S are called the meaningful event
times of S.

For meaningful event times to be well-defined there must be a minimal time t > ti−1

where one of the robots A1, . . . , Ai activates. Because the activation times of the robots
are independent exponential waiting times of mean 1, this is true with probability 1 for
a randomly sampled S. Moreover, with probability 1, at any time ti there is precisely
one robot A of A1, A2, . . . , Ai+1 scheduled for activation by S. Because both these
things are true with probability 1, we assume they are true for any event order S

referred to at any point in this analysis. This does not affect our main result (Theorem
6.1), which is probabilistic.

100

Our end-goal is randomly sample S from G and simulate it on four increasingly
“slower” environments: P(n), P(∞), P∗(∞), B, so that all environments (G and these
four) are coupled. Meaningful event times are so called because, prior to the first
activation of Ai, any of the robots Ai+1, Ai+2, . . . cannot enter or move in any of these
environments, and activating them causes nothing. Hence, at any time t which is not a
meaningful event time, the configuration of robots cannot change (no robots move and
no robots are deleted in any of the environments S is simulated on).

The possibility to create an event order S is the only reason we labelled the robots
and made the assumption about entrance orders in Section 6.2; the robots themselves
are not aware of their labels and make no use of them.

Figure 6.2 The processes P(n),P(∞),P∗(∞), B that we will be interested in. White
vertices are empty, black vertices contain a settled robot, and red vertices contain both
a mobile and a settled robot. Edge directions indicate edge directions in G(t). Note
that B does not have a source vertex.

P(n) versus G

Let n be the number of vertices of G. The path graph P(n) over n vertices is a graph
over the vertices v1v2 . . . vn such that there is an edge (vi, vi+1) for all 1 ≤ i ≤ n−1. We
simulate S on the graph environment P(n) where the source vertex s is v1. Simulating
S on P(n) results in what is mostly a normal-looking execution of Algorithm 6.1 on
P(n), but as discussed, it might lead to some oddities such as robots being deleted
while they are still outside the graph environment.

Let us introduce some notation. AG
i refers to the copy of Ai being simulated by S

on G, and A
P(n)
i is similarly defined.

Definition 6.3.3. The depth of AG
i at time t, written d(AG

i , t), is the number of times
AG

i has successfully moved before time t. Depth is initially 0. Entering at s is considered
a movement, so robots entering s have depth 1.

d(AP(n)
i , t) is similarly defined with respect to P(n).

Definition 6.3.4. Let T be a tree graph environment (such as P(n)) with source
vertex s. A vertex v of T becomes slow at time t if a mobile robot on v was activated
and found no vertex it could move to, and also, either v is a leaf of T or all of its
descendants in T are slow at time t.

101

A robot Ai is slow at time t if it is located at a slow vertex at time t.

Definition 6.3.5. The slow makespan of S on T , MT
slow, is the first time all vertices

of T are slow when simulating the event order S.

G is not always a tree, but given a fixed event order S, we can associate to S a
spanning tree of G, TS , containing G(t) as a subtree for all times t. Lemma 6.3.1
says robots only use edges of TS , so we may define the slow makespan of S on the G-
simulation as the slow makespan on TS . Slow makespan is clearly also defined for the
P(n)-simulation. Furthermore, MG

slow is an upper bound on the (regular) makespan of
the G-simulation, since every vertex must have a settled robot before it becomes slow
and, as the settled robots of G never move, they cannot be deleted by S.

Our motivation for introducing slow makespan is that we wish to show P(n) is
the environment that maximizes slow makespan on n vertices. However, it does not
maximize normal makespan (see Table 6.2 for an example).

Lemma 6.3.6. A slow robot AG
i is forever unable to move and never deleted in the

event order S.

Proof Only robots attempting to move can be deleted. If AG
i is at a leaf of TS , it can

never move, since its parent vertex in TS contains a settled robot marking the vertex
of a robot in a different location, and settled robots are never deleted. Hence, AG

i is
never deleted. Slow vertices propagate upwards from the leaves of TS , so the statement
of the lemma follows by induction. ■

Proposition 6.3.7. For any event order S, MG
slow ≤M

P(n)
slow .

An intuitive argument for this proposition is that if the spanning tree TS of G

is not P(n), then some vertex v of TS must have multiple descendants, hence robots
entering v will be able to branch to different neighbours and v is less likely to be blocked.
Consequently, robots will enter G faster than P(n), and so MG

slow ≤M
P(n)
slow . We need to

formalize this intuition into an argument that holds for any event order S. It turns out
there are many subtleties involving asynchronicity, settling and crashing which make
this not straightforward, and we require a rather technical argument. (Such subtleties
are also why it is simpler to compare the environments G,P(n), P(∞), P∗(∞), B rather
than compare G to B directly.)

We prove Proposition 6.3.7 by induction on the meaningful event times t0, t1, . . . in
the event order S. We show the following statements to be true for non-deleted robots
at all times tm:

(a) If AG
i is not slow or settled, then d(AG

i , tm) ≥ d(AP(n)
i , tm).

(b) If A
P(n)
i is slow or settled, then AG

i (tm) is slow or settled, and d(AG
i , tm) ≤

d(AP(n)
i , tm).

102

We note that both statements are (trivially) true at time t0, as no event has occurred
yet.

Lemma 6.3.8. If statement (b) is true up to time tm, settled and slow robots of P(n)
neither move nor get deleted as a result of an event of S scheduled for time tm (i.e.,
the robots still exist and are in the same place at time tm+1).

Assuming (a) and (b) hold at all times, let us see how to infer Proposition 6.3.7. If
a vertex becomes slow at some time t, it must contain a settled and a mobile robot,
both of whom become slow. Lemma 6.3.8 says that slow and settled robots of P(n)
never get deleted. Hence, the first time there are 2n slow robots on P(n) (two at every
vertex) is M

P(n)
slow . Statement (b) implies that if P(n) has 2n slow robots, G must also

contain 2n slow or settled robots. It is immediate to verify that this can only happen
when G has 2n slow robots. Hence, at time M

P(n)
slow , G has 2n slow robots–two at every

vertex. The inequality M
P(n)
slow ≥MG

slow follows by definition. ■

Lemma 6.3.9. If statements (a) and (b) are true up to time tm, statement (a) is true
at time tm+1.

Lemma 6.3.10. If statements (a) and (b) are true up to time tm, statement (b) is
true at time tm+1.

Proofs of the lemmas can be found in the “Analysis details” section (Section 6.5).

P(n) versus P(∞)

We wish to bound M
P(n)
slow (which is determined by the event order S). We do this by

comparing simulations of S on different environments. To start, let P(∞) be the path
graph with infinite vertices, and where s = v1. We may simulate S on P(∞) as we did
on P(n).

Lemma 6.3.11. For any event order S simulated on P(n) and P(∞) and any time
t < M

P(n)
slow , P(n) and P(∞) contain the exact same number of robots.

Proof The configuration of robots in the first n vertices of P(n) and P(∞) is identical
until vn becomes slow in P(n). After vn becomes slow, the configuration of robots in the
first n−1 vertices is still the same in both graphs until a robot in vn−1 is prevented from
moving by a robot in vn, meaning vn−1 becomes slow. By induction, the configuration
of robots in the first k vertices of both graphs is identical until vk in P(n) becomes slow
(we use Lemma 6.3.8 to infer that the slow robots at vk+1 are never deleted). Hence,
until v1 becomes slow, robots enter at the same times in P(n) and P(∞). v1 becomes
slow precisely at time M

P(n)
slow . ■

103

P(∞) versus P∗(∞)

We simulate S on the environment P∗(∞). P∗(∞) is P(∞) with the modification
that there is at time t = 0 a settled robot at every vertex vi. The settled robot at vi

marks vi−1. These “dummy” robots are never activated, and are not of the indexed
robots A1, A2, Because there is already a settled robot at every vertex, the robots
A1, A2, . . . never become settled. Call this environment P∗(∞). Lemma 6.3.12 shows
P∗(∞) is strictly slower than P(∞):

Lemma 6.3.12. For any event order S and at any time t, the amount of mobile-state
robots in P∗(∞) at time t is at most the total amount of robots in P(∞).

P∗(∞) versus totally asymmetric simple exclusion

We bound the arrival rate of robots at P∗(∞) by another, even slower process. This
process, B, takes place on the path graph P(∞) where we also have non-positive vertices
v0, v−1, v−2, . . ., and such that there is an edge (vi, vi+1) for every i. Like P∗(∞) there is
initially a settled robot at every vertex, marking the vertex before it. Unlike the other
processes, robots do not enter at s: the robot Ai begins inside the graph environment
as a mobile robot located at v−i+1. To compare B with P∗(∞), we count the robots
that cross the edge (v0, v1). There is one more crucial feature of B: robots are never
deleted from B. Scheduled robot deletions at S are treated as a regular activation of
the robot. Besides these differences, S can be simulated on B as before.

Lemma 6.3.13. For any event order S and at any time t, the number of mobile robots
that crossed the (v0, v1) edge of B is at most the number of robots that entered or were
deleted before entering P∗(∞).

Recall that S is an event order of some execution of Algorithm 6.1 on the graph
environment of interest, G. We may randomly sample S by running Algorithm 6.1 on
G and logging the events.

The stochastic process resulting from simulating a randomly sampled event order S

on B is called a totally asymmetric simple exclusion process (TASEP) with step initial
condition, first introduced in [Spi91]. In this process, robots (called also “particles”)
are activated at exponential rate 1 and attempt to move rightward whenever no other
robot blocks their path. This is precisely the outcome of simulating S on B (since
robot activations that lead to a deletion in the other processes are treated as a regular
activation in B).

In TASEP with step initial condition, let us write Bt to denote the number of
robots that have crossed (v0, v1) at time t. It is shown in [Ros81] that Bt converges to
1
4 t asymptotically almost surely (i.e., with probability 1 as t→∞). [Joh00] shows that
the deviations are of order t1/3. Specifically we have in the limit:

lim
t→∞

P(Bt −
t

4
≤ 2−4/3st1/3) = 1− F2(−s) (6.1)

104

Valid for all s ∈ R, where F2 is the Tracy-Widom distribution and obeys the asymp-
totics F2(−s) = O(e−c1s3) and 1−F2(s) = O(e−c2s3/2) as s→∞. We employ Equation
6.1 and the prior analysis to prove Theorem 6.1:

Proof Let G be a graph environment with n vertices. Let S be the randomly sampled
event order of an execution of Algorithm 6.1 on G. We will bound the slow makespan,
MG

slow.
We simulate S over the environments P(n), P(∞), P∗(∞), and B. From Lemma

6.3.13 we know that at all times the number of robots that crossed the (v0, v1) edge of
B, meaning Bt, is less than the number of robots that entered P∗(∞) or were deleted
before entering. At most ct/4 robots are deleted by time t, so the number of mobile
robots at P∗(∞) at time t is at least Bt − ct/4. Lemmas 6.3.11 and 6.3.12 imply this
is at least the number of robots at P(n) at any time t < M

P(n)
slow .

At any time t, there cannot be more than 2n robots at P(n). Hence, if Bt− ct/4 >

2n, then t ≥M
P(n)
slow . By Proposition 6.3.7, we shall then also have t ≥MG

slow.
Write tn = 8((1− c)−1 + n−1/3)n. We wish to show tn is an upper bound on MG

slow

asymptotically almost surely, which is precisely the statement of Theorem 6.1. To show
this, we are interested in Xn = P(Btn ≤ 2n), the probability that Btn is less than 2n at
time tn. Showing Xn tends to 0 as n→∞ completes our proof. Define the probability

p(n, s) = P(Btn −
tn

4
≤ 2−4/3st1/3

n) (6.2)

p(n, s) is the parametrized left innermost part of Equation 6.1 with t = tn (n
is a positive integer). Note that p(n, s) is monotonic increasing in s. Define sn =
(2n − tn/4)24/3t

−1/3
n . By algebra, we have Xn = p(n, sn). Fix any constant S∗ and

define Yn = p(n,S∗). Again by algebra, sn tends to −∞ as n→∞. Hence, for a large
n, we must have sn < S∗ and therefore Xn ≤ Yn (by the monotonicity of p(n, s)). By
Equation 6.1, Yn tends to 1−F2(−S∗) as n→∞. Hence Xn is at most 1−F2(−S∗) in
the limit. By taking S∗ → −∞ we see that Xn in the limit is at most 1−F2(∞) = 0.■

We note that slow makespan can be nearly equal to makespan (see Table 6.2, or
consider a path graph P(n) the source vertex placed at s = v2 and robots initially
moving rightwards). Hence, one does not “miss out” on much by using it to bound
makespan.

6.3.2 Synchronous time and multiple sources

We describe extensions of our results to two settings.
Synchronous time. We may consider a synchronous time setting that is dis-

cretized to steps t = 1, 2, . . . such that at every step, all the robots activate at once. In
this setting, Algorithm 6.1 ends up exploring just one branch of the tree at a time, like
depth-first-search; so no two robots ever attempt to enter the same vertex. Analysis
similar to the asynchronous case shows that robots then enter at rate t/2 (instead of

105

approximately t/4) on P(n), and analogous reasoning to Lemma 6.3.7 and Theorem
6.1 gives an upper bound of 4(1 − c)−1n on the makespan of a graph with n vertices,
assuming ct/2 adversarial events. Consider the path graph P(n) with s = v2 (not the
usual s = v1), and where the robots first fill the vertices v3, v4, . . . with a two- layer
before reaching v1. The synchronous makespan of this environment is asymptotically
4(1− c)−1n. Hence, the bound on the makespan in the synchronous case is exact.

Multiple source vertices. Instead of just having a single source vertex s, we may
consider environments with multiple source vertices such that each of them corresponds
to its own set of robots A1, A2, . . . entering over time. In asynchronous time, Lemma
6.3.1 can be generalized to show that G(t) is then a forest, and the robots attempt
to create a spanning forest of G. The technique in this paper can be generalized to
show that the makespan bound of Theorem 6.1 holds. In general graph environments
multiple sources may not improve the makespan by much. For example, consider the
path graph P(n) with k sources on v1, v2, . . . vk. The makespan of this graph is bounded
below by the makespan of the path graph P(n− k − 1) with a single source vertex v1.

6.4 Simulation and evaluation

For empirical confirmation of our analysis, we numerically simulated our algorithm
on a number of environments. On these environments, we measured the makespan
and the percentage of robots that crashed for the parameters c = 0, 0.25, 0.75, aver-
aging them over 30 simulations per configuration and rounding to the nearest integer.
Data on several environments is found in Table 6.2. Figure 6.3 shows stills from some
simulations.

Figure 6.3 An execution of Algorithm 6.1 on (a) an 11 × 11 square grid and (b) an
“indoor” environment. The legend is same as Figure 6.1.

From the data, it is clear that makespan is affected by the shape of the environment

106

n c = 0 c = 0.25 c = 0.75
Figure 6.1 62 272;373 321;446 (18%) 555;743 (52%)
Figure 6.3, (a) 121 463;554 484;586 (13%) 715;921 (39%)
Figure 6.3, (b) 300 1791;1907 2154;2281 (19%) 3894;4116 (56%)
P(300) 300 1677;2325 1940;2883 (23%) 3727;6147 (66%)

Table 6.2: The makespan and slow makespan of Algorithm 6.1 over the environments in the
referred-to Figures and over the path graph of length 300, P(300) . We vary the crash density
parameter c. The cell format is makespan ; slow makespan (% of robots crashed). The column
“n” gives the number of vertices in the environment.

and by c. We see that an increase in the percentage of robots crashed scales makespan
up gracefully, and that spacious environments generally have lower makespans. We
also confirm that the slow makespans are always lower than the bound of Theorem 6.1.
Closest to the bound is the scenario where the environment is the path graph P(300)
and c = 0, in which case slow makespan is almost exactly the bound, 8 · 300. This is
consistent with our analysis that the P(n) environment has the largest slow makespan.
It also verifies that Theorem 6.1 gives a correct upper bound. Such data further suggests
that for spacious environments, and for large c, performance on average is better than
the worst-case performance guarantee of Theorem 6.1. In the simulations, we did not
choose our adversarial events to be maximally obstructing, but rather crashed robots
arbitrarily–a cleverer adversary would cause the makespan and slow makespan to be
closer to the worst-case (and cause a larger percentage of robots to crash).

6.5 Analysis details

Reminder:

(a) If AG
i is not slow or settled at time tm, then d(AG

i , tm) ≥ d(AP(n)
i , tm).

(b) If A
P(n)
i is slow or settled at time tm, then AG

i (tm) is slow or settled, and
d(AG

i , tm) ≤ d(AP(n)
i , tm).

6.5.1 Proof of Lemma 6.3.8

Proof Referring to the Lemma’s statement, we remind that here “time tm” refers to
the configuration of agents at time tm before any scheduled events. Hence, even if
something is true at time tm, we still need to show that it remains true after the events
that happen at time tm.

Let A
P(n)
i be slow or settled at time tm. To show A

P(n)
i will not be deleted, it

suffices to show the event order S will not delete AG
i . (b) implies AG

i is settled or slow
at time tm. Lemma 6.3.6 says S never deletes slow agents. S never deletes settled
agents of G as, in our model, agents are only deleted when they move, and S obeys the
rules of the model when simulated on G. Hence, S will not delete AG

i .

107

Next we show that A
P(n)
i will not move as a result of an event scheduled for time tm.

If A
P(n)
i is settled, this is true by definition. Otherwise, A

P(n)
i is slow. By assumption,

(b) is true at all times up to tm. Hence, by the same reasoning as the above paragraph,
agents of P(n) that became slow or settled at or prior to time tm have not been deleted.
Consequently, the argument of Lemma 6.3.6 applies also here, allowing us to conclude
that agents cannot move after they become slow. In particular this applies to A

P(n)
i .■

6.5.2 Proof of Lemma 6.3.9

Proof Only one event occurs at time tm. This event is either an uninterrupted activation
of an agent (meaning the agent is not deleted), or an activation that leads to a deletion.
If the event is a deletion, (a) holds at time tm+1 trivially, so we assume that it is an
uninterrupted activation.

Let AG
i and A

P(n)
i be the agents that are activated at time tm. The depth of any

other agent is unchanged, so we need only verify (a) for these two agents. Assuming
(a) it true at time tm, it is only possible for (a) to become false at time tm+1 if AG

i did
not move, but A

P(n)
i did. We assume this is the case.

If AG
i does not move as a result of its activation at time tm, then either it is settled, in

which case (a) is true and we are done, or there is a mobile agent at every neighbouring
vertex in G(tm). If AG

i is mobile and all of its neighbours are slow at time tm, then
AG

i becomes slow at time tm+1 and (a) is true. Otherwise there is a mobile agent, AG
j ,

that is preventing AG
i from moving and is not slow. We must have that

d(AG
i , tm+1) + 1 = d(AG

j , tm+1) (6.3)

Because AG
i and AG

j are always moving down a spanning tree TS of G, hence the
depth of AG

j must be precisely one greater than AG
i ’s in order to prevent movement.

Because AG
j is not activated at time tm, (a) and (b) are still true for it at time tm+1.

Because AG
j is not slow or settled, (a) implies that

d(AG
j , tm+1) ≥ d(AP(n)

j , tm+1) (6.4)

And the contrapositive of (b) implies that A
P(n)
j is not settled. However, consider

the structure of the graph P(n): if A
P(n)
j is mobile, then since it entered before A

P(n)
i ,

it must be further ahead. In particular, we must have

d(AP(n)
j , tm+1) ≥ d(AP(n)

i , tm+1) + 1 (6.5)

As otherwise A
P(n)
j would have prevented A

P(n)
i from moving when activated at

time tm.
(In)equalities 6.3, 6.4 and 6.5 imply d(AG

i , tm+1) ≥ d(AP(n)
i , tm+1). This shows (a)

is true at time tm+1. ■

108

6.5.3 Proof of Lemma 6.3.10

Proof As in Lemma 6.3.9, we can assume that the event at time tm is the uninterrupted
activation of a pair of agents AG

i and A
P(n)
i , and we need only verify that (b) is still

true for this pair of agents. We separate our proof into cases.
Case 1: Assume A

P(n)
i is settled at time tm+1. Because P(n) is a path graph and

using Lemma 6.3.8, A
P(n)
i can only be settled if every non-deleted agent that entered

before it is settled behind it. At time tm+1 (b) is still true for all agents other than AG
i

and A
P(n)
i . Hence, it follows from (b) that for any non-deleted agent AG

j where j < i

we have:

d(AG
j , tm+1) ≤ d(AP(n)

j , tm+1) (6.6)

Algorithm 6.1 guarantees that any agent in G always neighbours a settled agent
or is at the same location as a settled agent. Thus, we know that d(AG

i , tm+1) ≤
d(AG

j , tm+1) + 1 for some settled agent Aj . Furthermore, this inequality must hold for
some AG

j that entered before AG
i (i.e., j < i), because any settled agent that entered

after AG
i must have gone down a different branch of TS , otherwise it would be blocked by

AG
i and unable to settle. Let jmax = maxj<id(AG

j , tm+1). Then d(AG
i , tm+1) ≤ jmax+1.

If this is an equality, AG
i is necessarily settled.

From Inequality 6.6 we infer

d(AP(n)
i , tm+1) ≥ maxj<id(AP(n)

j , tm+1) + 1 ≥ jmax + 1 ≥ d(AG
i , tm+1) (6.7)

Where d(AP(n)
i , tm+1) ≥ maxj<id(AP(n)

j , tm+1) + 1 follows from the fact that A
P(n)
i

is ahead of all non-deleted agents that came before it. In the case of equality, AG
i

must be settled. If AG
i isn’t settled, then the inequality is strict. Consequently, it

follows from the fact that (a) holds at time tm+1 (Lemma 6.3.9) that AG
i must be slow.

Otherwise, (a) implies AG
i ’s depth is greater than A

P(n)
i ’s, contradicting the inequality.

Either way, (b) is true.
Case 2: Assume A

P(n)
i is slow and not settled at time tm+1. If A

P(n)
i is slow at

tm, then it follows from (b) that AG
i is slow or settled at tm, and so activation cannot

affect either of these agents, meaning (b) remains true at tm+1 and we are done. Thus,
we may assume A

P(n)
i is not slow at time tm.

Using Lemma 6.3.8, A
P(n)
i can only become slow at time tm+1 if all vertices behind

it contain settled agents, and all vertices ahead of it contain two slow agents (one settled
and one mobile). If d(AP(n)

i , tm) is k there are n + (n − k) = 2n − k slow or settled
agents in P(n) at time tm. These 2n− k agents must have entered P(n) before A

P(n)
i ,

because any agent that enters after A
P(n)
i must pass it to become slow or settled, and

this is impossible because A
P(n)
i is not settled.

Using (b) we learn from the above that in G, at time tm there are at least 2n − k

109

settled or slow agents that entered before AG
i . Of these, at least n− k agents are slow

and mobile, and have greater depth than AG
i or are in a different branch of TS (because

they arrived before AG
i and AG

i could not have passed them). There are thus at most
n − (n − k) = k vertices AG

i could have visited since entering G, meaning its depth is
at most k, and we have d(AG

i , tm) ≤ d(AP(n)
i , tm).

If this inequality is strict, then from statement (a) we learn that AG
i is settled or

slow, so (b) is true and we are done. Otherwise, d(AG
i , tm) = k. We saw there are

(at least) n − k slow mobile agents in G that have greater depth than AG
i or are in a

different branch of TS . From this, we infer that any descendant of AG
i must contain a

slow mobile agent, or that AG
i is at a leaf of TS and has no descendants. Thus, if AG

i

is not already settled or slow, it will become slow after the activation at time tm, since
its slow descendants will prevent it from moving. This completes the proof. ■

6.5.4 Proof of Lemma 6.3.12

Proof Let A∗i be the copy of Ai simulated over P∗(∞). Let t0, t1, t2, . . . be the mean-
ingful event times of S. We show by induction that at any time tm, for all non-deleted
agents:

either A
P(∞)
i is settled or d(A∗i , tm) ≤ d(AP(∞)

i , tm) (6.8)

This implies any agent that enters P∗(∞) must have already or concurrently entered
P(∞), completing the proof.

The induction statement is trivially true at time t0, as no event has occurred yet.
We assume it is true up to time tm, and show it remains true at tm+1.

If the event scheduled for time tm was a deletion of some agent, the statement
remains trivially true (as both simulated versions of the agent are deleted). Otherwise,
the scheduled event is the uninterrupted activation of some pair of agents A∗i and A

P(n)
i .

Any agent Aj where j ̸= i does not move, so we need only verify the inductive
statement remains true for A∗i and A

P(n)
i . The only situation in which Inequality 6.8 is

falsified at time tm+1 if it is true at time tm is if d(A∗i , tm) = d(AP(∞)
i , tm) and A

P(∞)
i

is mobile at time tm+1, but A∗i manages to move whereas A
P(∞)
i is blocked by a mobile

agent A
P(∞)
j . By the inductive hypothesis, d(A∗j , tm) ≤ d(AP(∞)

j , tm). Because P∗(∞)
is a path graph and j < i, we know that d(A∗j , t) > d(A∗i , t) at all times t after A∗j
entered the environment. Hence, if d(A∗i , tm) = d(AP(∞)

i , tm) and A
P(∞)
j blocks A

P(∞)
i ,

then A∗j must also block A∗i when it attempts to move. This shows that the inductive
hypothesis is correct at time tm+1. ■

6.5.5 Proof of Lemma 6.3.13

Proof Unlike Lemma 6.3.12, here we count the number of agents that enter P∗(∞),
and not the number of currently existing agents that entered it. This means we count

110

also agents that entered at P∗(∞) but were deleted. This difference is necessary for
the comparison, because agents cannot be deleted from B.

Despite this difference, the proof is very similar to Lemma 6.3.12. One shows by
induction on the meaningful event times t0, t1, t2, . . . that at any time tm, for any i such
that A

P∗(∞)
i was not deleted we have:

d(AB
i , tm)− i + 1 ≤ d(AP

∗(∞)
i , tm) (6.9)

Note that d(AB
i , tm) − i + 1 is the index of the vertex of AB

i at time tm. If AB
i

crossed (v0, v1) we must have d(AB
i , tm)− i + 1 ≥ 1. Recalling that if A

P∗(∞)
i is outside

of G at time t then d(AP
∗(∞)

i , t) = 0, we see by (6.9) that crossing (v0, v1) can only
happen if A

P∗(∞)
i entered P∗(∞), or if A

P∗(∞)
i was deleted before entering. Hence, the

Lemma follows from (6.9).
Let us show (6.9) holds by induction. It holds trivially for all i at t0. Now, assume

(6.9) holds at time tm, and we will show it holds at time tm+1.
Suppose the pair of agents activated at tm is A

P∗(∞)
i and AB

i . Then these are the
only agents for which (6.9) might be false at tm+1. Assuming (6.9) is true at tm, it can
only become false at tm+1 if d(AB

i , tm) − i + 1 = d(AP
∗(∞)

i , tm), but AB
i successfully

moves as a result of activation at time tm whereas A
P∗(∞)
i does not and also is not

deleted. If A
P∗(∞)
i does not move this means some A

P∗(∞)
j , j < i is blocking it. Hence,

we must have d(AP
∗(∞)

j , tm+1) = d(AP
∗(∞)

i , tm+1) + 1. By the inductive hypothesis we
have d(AB

j , tm+1) − j + 1 ≤ d(AP
∗(∞)

j , tm+1). Since j < i, AB
j is always ahead of AB

i ,
meaning d(AB

i , tm+1)−i+1 < d(AB
j , tm+1)−j+1. Combining these (in)equalities we get

d(AB
i , tm+1)−i+1 < d(AP

∗(∞)
i , tm+1)+1, hence d(AB

i , tm+1)−i+1 ≤ d(AP
∗(∞)

i , tm+1).
This completes the proof by induction of (6.9). ■

6.6 Discussion

In swarm robotics, where one must coordinate an enormous robotic fleet, we must
anticipate many faults, such as crashing and traffic jams. Because robots in the swarm
are usually assumed to be autonomous and have limited computational power, complex
techniques for handling such faults are not necessarily feasible. Hence, it is important
to ask whether simple rules of behaviour can be effective. To this end, we investigated
the problem of covering an unknown graph environment, and constructing an implicit
spanning tree, with a swarm of frequently crashing robots. We showed a simple and
local rule of behaviour that enables the swarm to quickly and reliably finish this task in
the presence of crashes. The swarm’s performance degrades gracefully as crash density
increases.

We outline here several directions for future research. First, our model interprets
the “swarm” part of swarm robotics as a vast and redundant fleet of robots that can be
dispersed into the environment over time. We used this model for uniform dispersal, but

111

it would be interesting to adapt it to other kinds of missions, and design algorithms for
those missions that can handle crashes or other forms of interference. For example, in
Chapter 3, mobile agents entering at a source node s over time sequentially pursue each
other to discover shortest paths between s and some target node t. The “algorithm” in
Chapter 3 succeeds even if some of the agents are interrupted and have their location
changed.

Next, in this chapter, we made the simplifying assumption that the environment
of the robots is discrete. If the robots instead attempted to cover a continuous planar
domain by an algorithm similar to ours, the robots would need to construct a shared
discrete graph representation of the environment through the settled robots in G(t)
and their markings. We believe that our algorithm can readily be extended to such
settings.

Lastly, can we exploit the large number of robots in a swarm to handle other kinds
of errors? There are many situations and modes of failure that can be discussed, such
as Byzantine robotic agents, or dynamic changes to the environment.

112

Chapter 7

Swarm Robotics III: Physical
Sorting

Chapters 5 and 6 explored the topic of swarm uniform dispersion. Here we explore a
different problem, inspired by the idea of efficiently routing self-driving vehicles on a
freeway to their destinations, which we term “physical sorting”. Given a collection of red
and blue mobile agents located on two grid rows, we seek to move all the blue agents to
the far left side and all the red agents to the far right side, thus physically sorting them
according to color. The agents all start on the bottom row. They move simultaneously
at discrete time steps and must not collide. Our goal is to design a centralized algorithm
that controls the agents so as to sort them in the least number of time steps. We derive
an exact lower bound on the amount of time any algorithm requires to physically sort a
given initial configuration of agents, and present a centralized decisionmaking algorithm
that matches this lower bound.

This chapter is based on the work [RAB21]. We wish to emphasize that centralized
algorithms are significantly more powerful than the ant-like algorithms we stuck to
throughout this work, and explicitly do not belong in the ants paradigm. What relates
the work reported here to the themes of this dissertation is our showing that this
powerful, centralized algorithm performs only slightly better than a distributed, ant-
like physical sorting algorithm. Specifically, we show that whenever the initial agent
configuration is “normal”, meaning the leftmost agent is red and the rightmost agent
is blue, a very straightforward, ant-like, decentralized and local sensing-based physical
sorting algorithm is at most 1 time step slower than a centralized instance-optimal
algorithm. We did something similar in Chapter 5 when we placed centralized and
ant-like algorithms on similar grounds by showing that even a centralized algorithm
cannot optimize travel in general grid environments (Proposition 5.3.9), whereas an
ant-like algorithm suffices for optimizing travel in simply connected environments.

In addition to the above, we wish to highlight two points connecting the results we
obtain in this chapter with the broader ideas in this dissertation:

113

1. Our model of agent motion is similar to that of previous chapters and is TASEP-
related. In fact, a special case of one of our results (Corollary 7.3) can be used
to compute the time it takes an arbitrary TASEP particle configuration with
synchronized waking times to get from one end of a row to the other, assuming
particles always move right (see Section 7.1). Although this corollary is fairly
straightforward, we could not find a similar result in the TASEP literature.

2. Despite the majority of our efforts being dedicated to analyzing a centralized
sorting algorithm, our mathematical analysis of physical sorting is fundamentally
agent-based and uses many techniques from previous chapters, the most notable
of which is exchangeability (which we use to define “labels” that agents exchange
between each other), suggesting that these techniques have broader applicability.

7.1 Introduction

Suppose a number of mobile agents are moving on a row. Some of the agents need to
travel left, and the other agents need to travel right to arrive at their destination. The
agents are not allowed to collide, but have access to another adjacent, initially empty
row that they can use to manoeuvre past each other. What is the most efficient way
for the agents to achieve their goal and arrive at their desired left-side or right-side
destinations?

In this chapter we study a discrete formalization of this problem. Given a collection
of red and blue mobile agents located on parallel grid rows of equal length, we seek a
centralized algorithm to move all the blue agents to the far left side and all the red
agents to the far right side columns, thus sorting the agents according to color (see
Figure 7.2). We assume all agents are initially located on the bottom row. Agents can
move simultaneously at discrete time steps T = 0, 1, . . ., and must not collide with each
other (two agents may never occupy or attempt to move to the same location). Our
goal is to design a centralized algorithm that controls the agents so as to sort them in
the least number of time steps.

This problem first arose as part of ongoing research into traffic management algo-
rithms for self-driving vehicles on a freeway. In the context of traffic management, the
two rows represent a moving subsection of an upwards-facing freeway. The subsection
tracks a set of vehicles all driving at the same forward velocity. We assume that freeway
exits might be placed to the left or right of the road. Thus, it is necessary to shift all
vehicles that need to exit the freeway leftwards or rightwards ahead of time depending
on their desired exit direction, i.e., to “sort” them (see Figure 7.1). In this chapter we
focus on the special case where the top row is initially empty, which we believe to be
independently interesting.

Similar problems in vehicular control, warehouse management, and combinatorial
puzzles have been investigated in the literature and might broadly be referred to as

114

Figure 7.1 Vehicles driving on a freeway. The blue vehicles want to exit the freeway via
an upcoming left exit (not illustrated), and the red vehicles want to exit the freeway
via an upcoming right exit. Vehicles need to shift their position to the left or right
ahead of time to prepare for exiting the freeway. (a) shows an unsorted configuration,
and (b) shows the sorted configuration, after the vehicles have adjusted their positions.

(a) (b)

Figure 7.2 (a) illustrates an initial configuration of agents. (b) illustrates a sorted
configuration (there are many possible such configurations).

x = 1 x = m

(a)
x = 1 x = m

(b)

“physical sorting” problems [ZGM16; KHM+15; LV10; SCZ16; SCZ14; RW90; JS+79].
In physical sorting problems, a collection of mobile agents that occupy physical space
must bypass each other without colliding in order to arrive at some predefined sorted
configuration.

A trivial algorithm that accomplishes our agents’ sorting task is the following: move
all the agents of one color (say, red) to the top row; then let the red agents move
right and the blue agents move left in their respective row (Figure 7.3, a-e). This
algorithm does not require complex computation nor even centralized decision-making–
it is a straightforward, decentralized, local strategy that can be executed by simple
autonomous agents without requiring any global knowledge on the agent configuration.

How does the above simple algorithm fare compared to an optimal centralized
sorting algorithm? A priori, since the number of possible strategies for the agents is
enormous, one would expect far better sorting strategies are available. However, we
shall prove the surprising result that this “trivial” distributed strategy is at most one
time step short of optimal for a very large class of initial agent configurations called
normal configurations (configurations where the leftmost agent wants to go right and
the rightmost agent wants to go left), and is in fact optimal over such configurations
assuming we choose the correct color to move to the spare row.

In the general case where we also consider non-normal configurations, we show that

115

the optimal makespan is determined by the maximal normal subconfiguration, and find
a provably optimal sorting algorithm for the agents (Section 7.6). Furthermore, we
derive an exact lower bound for the amount of time it takes to sort the agents given
any starting configuration (Theorem 7.1). Our proposed optimal algorithm matches
this lower bound, thus it is instance optimal in the sense of [ABC17], attaining the best
possible sorting time for any initial configuration.

The algorithm (Algorithm 7.2) can be understood as blending two strategies: inside
the maximal normal subconfiguration, we split the agents into rows based on their
desired direction of motion, according to the aforementioned “trivial” strategy. Outside
this subconfiguration, agents split between both rows to move faster regardless of their
color (Figure 7.9). The idea behind this algorithm is simple to understand, but the
implementation requires several delicate caveats which are discussed throughout this
chapter.

Physical sorting can sometimes be unintuitive: the addition of a single agent can
completely change the optimal strategy and double the time to completion of the sorting
(Figure 7.3). Furthermore, when attempting to derive lower bounds on the makespan,
the infinite set of strategies available to the agents makes it difficult to keep track of
each agent, which greatly complicates the mathematical proofs. We overcome these
complexities by identifying a small set of critical agents (see Definition 7.4.3) and
showing, roughly, that only the movements of the critical agents at a given time step
can affect any algorithm’s makespan.

We believe that the expression for the lower bound obtained in Theorem 7.1 is
independently interesting. As an example application, Corollary 7.3, which is a small
special case of the expression, computes the amount of time it takes for a “traffic jam”
of agents on a single row to get to the right (left) side of the row, assuming each
agent moves right (left) at every time step where there is no agent in front of them
(see Figure 7.4). This corollary relates to the study of the totally asymmetric simple
exclusion process in statistical mechanics, which has been used to study transport
phenomena such as traffic flow and biological transport [CMZ11; KK10; CSS00]. The
lower bound of Theorem 7.1 can be applied to compute the time it takes an arbitrary
TASEP particle configuration with synchronized waking times to get from one end of
the row to the other, assuming pright = 1 (probability of moving right) and pleft = 0.
Although this corollary is fairly straightforward, we could not find a similar result in
the TASEP literature.

7.2 Related Work

Various “physical sorting” problems appear in the literature [ZGM16; KHM+15; LV10;
SCZ16; SCZ14] with applications to warehouse logistics, where loads must be efficiently
moved to different ends of a warehouse (in particular, our assumptions resemble those of
puzzle based storage systems [GK07]); servicing, where mobile robots self-sort according

116

Figure 7.3 (a)-(e) illustrate the first five time steps of an optimal strategy for sorting
a normal initial configuration with a single blue agent placed in front of a red agent
group. No sorting is possible in faster than 2∆ ticks. Subfigures (f)-(j) illustrate non-
normal initial configuration that can be sorted in ∆ + 1 ticks via splitting the agents
between the rows in an alternating fashion (Algorithm 7.2). The first five time steps of
this splitting strategy are shown. Both initial configurations share a very long sequence
of red agents. The only difference is a lone blue agent. However, the optimal sorting
times are strikingly different.

· · · · · ·

∆ ∆
(a) t = 0

· · · · · ·
(b) t = 1

· · · · · ·
(c) t = 2

· · · · · ·
(d) t = 3

· · · · · ·
(e) t = 4

· · · · · ·

∆ ∆
(f) t = 0

· · · · · ·
(g) t = 1

· · · · · ·
(h) t = 2

· · · · · ·
(i) t = 3

· · · · · ·
(j) t = 4

to some priority ordering; assembling, where tasks should be carried in a predefined or-
der which respects physical space; and transportation. In such problems, mobile agents
(robots, vehicles, etc.) that take up physical space are required to attain some kind
of sorted configuration while avoiding collisions and maneuvering around each other,
making their decisions in either a distributed [ZGM16] or centralized [PSS18] fashion.
For example, similar to us, in [PSS18], the authors consider a task of sorting mobile
vehicles in two rows, developing approximation algorithms and proving computational
hardness results. Their goal, however, is to split the vehicles between the rows accord-
ing to their color as fast as possible, as opposed to our goal of bringing robots to the
left-hand or right-hand side depending on their color.

The famous “15 puzzle”, where numbered tiles must be slid across a grid until
they are ordered, can also be seen as a physical sorting task for which algorithms and
computational hardness results are available [JS+79; RW90].

Lane changing has been intensively studied in the past in many traffic models
[HOU95; CT94; NGGD08; ASS16], with recent results in both centralized and dis-
tributed control protocols [VAT+16; Eke19; SSW10].

117

Figure 7.4 Subfigures (a)-(e) illustrate a single row model with agents moving in one
direction. The model could be viewed as a TASEP with pright = 1 and pleft = 0. In
the provided example, all agents reach the far-right side on the 9th time step, which
is equal to what we define as the fmax value of the configuration (see Definition 7.4.2
and Corollary 7.3)

(a) t = 0

(b) t = 1

(c) t = 2

(d) t = 3

(e) t = 4

As previously mentioned, a side application of our results (Corollary 7.3) relates to
totally simple exclusion processes (TASEPs) in statistical mechanics [CMZ11; KK10;
CSS00]. TASEPs have been used, in particular, as an idealized model that captures
many of the phenomena of real-world vehicular traffic. The general model we present
is, however, not directly related to any TASEP model, since we study deterministic
mobile agents that act according to an intelligent, centralized algorithm, rather than a
predetermined stochastic process.

Broadly speaking, our mathematical modelling of the problem (Section 7.3) also
relates to various discrete grid-like settings in multi-robot and multi-agent systems,
wherein a large number of robots whose spatial locations are represented as coordinates
on a grid-like region all move synchronously according to a local or centralized algorithm
while avoiding collisions. The goal of agents in these settings can be, for example, fast
deployment, gathering, or formation on an a priori unknown grid environment [AB19b;
AB20; BDS08; APB18; DPV15; FYO+15; HL20].

7.3 Model

We are given n mobile agents on a 2×m grid environment, such that n1 agents are red
and n2 agents are blue (n1 + n2 = n). Every agent begins in an (x, y) coordinate of the
form (·, 1) (see Figure 7.2a), starting at x = 1. A column of the environment is called
red-occupied if it contains at least one red agent and no blue agents, blue-occupied if
it contains at least one blue agent and no red agents, mixed if it contains both colors

118

of agents, and empty otherwise. The goal of the agents is to move to a configuration
such that the red-occupied columns are the rightmost columns, and the blue-occupied
columns are the leftmost columns. Formally, the following conditions must be fulfilled:

1. There are no mixed columns.

2. Every blue-occupied column is to the left of every red-occupied column and every
empty column.

3. Every red-occupied column is to the right of every blue-occupied column and
every empty column.

When the agents achieve such a configuration we say the system is sorted (see
Figure 7.2b), as it separates all agents in the configuration to the far left or far right
columns of the environment based on color. It might be desirable to require, in addition
to the above three conditions, that all agents end up on the bottom row (just as they
began): in all algorithms we present here, this can be achieved at the cost of at most one
additional time step that moves all the robots downwards, and analogous optimality
results hold.

We define a model of agent motion based on common assumptions in synchronous
and semi-synchronous models of traffic flow, biological systems, and the theory of mobile
multi-robot systems [CMZ11; BDS08; APB18; DPV15; FYO+15].

Time is discretized into steps t = 0, 1, At every time step, agents may move
to adjacent empty locations (up, down, left, or right, non-diagonally). Agents cannot
move to a location that already contains an agent, nor can two agents move to the
same empty location at the same time.

Note that, according to the above assumptions, a robot can only move into a location
that is unoccupied, but two or more adjacent agents followed by an empty location
cannot both move right (or left) in the same time step, meaning that such situations
result in a traffic jam or “shock”: the agents at the leftmost (rightmost) end of the line
must wait several time steps for empty space to be created between them and the rest
of the agents (see the first column of Figure 7.3). This is a common assumption in the
literature on traffic flow, reflecting the fact that adjacent agents (even those receiving
commands transmitted by a central algorithm) do not have perfectly coordinated clocks
nor perfect motion detection systems and thus cannot begin moving at the exact same
time and at the exact same speed without risking collisions.

The beginning of a time step refers to the configuration before any agent movements,
and the end of the time step refers to the configuration after agent movements (so the
configuration at the beginning of time t + 1 is the same as at the end of time t). Unless
explicitly stated otherwise, anywhere in this chapter, when we refer to the agents’
configuration “at time t”, we mean the configuration at the beginning of that time
step.

119

The agents’ actions are controlled by a sorting algorithm. The number of time
steps it takes an algorithm to move the agents from the initial configuration to a
sorted configuration is called the makespan of that algorithm with respect to the initial
configuration (i.e., the makespan is the first t such that the configuration is sorted at
the beginning of time step t).

Definition 7.3.1. A normal initial configuration is an initial configuration of agents
such that the rightmost agent is blue and the leftmost agent is red.

Unless stated otherwise, we assume that the initial agent configuration is normal.
We will specifically handle non-normal initial configurations in Section 7.6. Certain
strategies, such as an alternating split between the rows that enables each agent to
move horizontally faster, are effective in non-normal configurations but ineffective in
normal configurations, thus the optimal strategy can be different. An example is shown
in Figure 7.3, which compares a normal configuration to a non-normal configuration
and shows an optimal strategy for each case. In Figure 7.3, the addition of a single
blue agent completely alters the optimal strategy, and doubles the optimal makespan.

7.4 A lower bound on makespan

In this section, we will prove a lower bound on the makespan of any (centralized or
distributed) sorting algorithm for normal configurations. In the next section, we will
show this lower bound is tight for normal configurations: there is a centralized algorithm
that matches it exactly.

The lower bound is defined as a function of the initial configuration of agents and
empty columns. For every agent A, we denote A’s location at time t as (Ax(t), Ay(t)).
Let A = R ∪ B be the set of all agents, where R is the set of red agents and B is the
set of blue agents.

Definition 7.4.1. For any agent A, we define front(A) and back(A).

1. If A ∈ R, then front(A) is the set of all not-red-occupied columns (i.e., empty or
blue-occupied) to the right right of A (i.e., with strictly greater x coordinate) and
back(A) is the set of all red-occupied columns to the left of A (i.e., with strictly
smaller x coordinate) at time 0.

2. If A ∈ B, then front(A) is the set of all not-blue-occupied columns to the left of
A and back(A) is the set of all blue-occupied columns to the right of A at time 0.

item 7.4.1 is illustrated in Figure 7.5.
For any agent A we define the value f(A) which is dependent on the initial configu-

ration. We will show that every value f(A) in an initial configuration is a lower bound
on the makespan of any sorting algorithm executed over that initial configuration. Thus
the maximum fmax of all these values is a lower bound as well.

120

Figure 7.5 The front and the back of the red agent A (highlighted in yellow). We see
that f(A) = 8 (Definition 7.4.2).

Aback(A) front(A)

Definition 7.4.2. For every agent A, we define f(A) as follows (see Figure 7.5):

f(A) = |front(A)|+|back(A)|,

We further define fmax = maxA∈A f(A).

Definition 7.4.3. An agent A for which f(A) = fmax is called a critical agent.

We will show that in many initial configurations, fmax is the exact lower bound
for the makespan of any sorting algorithm. However, in some situations, such as when
the agents are too densely packed together and must waste time without being able to
move, it is possible that the algorithm requires one extra time step to sort the agents.
To derive an exact lower bound, we will have to take into account this “plus 1,” whose
preconditions are captured by the following definition:

Definition 7.4.4. We define V to equal 1 if:

1. There is both a red and a blue critical agent, or

2. There is a critical agent A such that, in the initial configuration, another agent is
located immediately in front of it (i.e., at (Ax(0)+1, 1) if A is red and (Ax(0)−1, 1)
if A is blue).

Otherwise, V = 0.

The goal of this section and the next one is to prove the following result:

Theorem 7.1. The makespan of any physical sorting algorithm for a given normal
initial configuration is at least fmax + V. This lower bound is precise; there is an
algorithm that achieves sorting in exactly fmax + V time steps.

For the sake of the proof, it is helpful to track the relative ordering of red and blue
agents based on their x coordinate. To this end, we assign each red agent an integer
called a label. At time t = 0, the labels depend on the relative x-coordinate position

121

of the agents, such that the leftmost red agent has the label n1, the second-leftmost
red agent has the label n1 − 1, and so on, with the rightmost red agent having label
1. Two agents R and R′ exchange their labels at time t if Rx(t − 1) ≤ R′x(t − 1) but
Rx(t) > R′x(t) (in other words, they pass each other horizontally). When this happens,
R′ receives the label R had at time t− 1, and vice-versa.

We similarly define labels for blue agents, but in the opposite order of x coordinates,
such that the rightmost blue agent receives label n2, and the leftmost blue agent receives
label 1. Label exchanging is defined as before.

Note that labels can only be exchanged by agents of the same color. When a pair
of red and blue agents pass each other, labels are unchanged.

We define ord(A, t) to equal the agent A’s label at time t.
Let PB

i (t) denote the blue agent A with ord(A, t) = i at time t. When t is implicitly
obvious, we will simply write PB

i . In the text, we will intuitively think of PB
i as having

a “persistent” identity, like an agent, and track its position. We will likewise define
P R

i (t) for red agents.

Observation 7.4.5. Let ord(A, t) = ord(A′, t + 1), where A and A′ are agents of the
same color. Then |Ax(t)−A′x(t + 1)|≤ 1, i.e. a label can not travel faster than one step
horizontally in a single time tick.

Observation 7.4.5 follows from the fact that agents can only “exchange” labels by
bypassing each other.

We will now prove several claims about blue agents which will establish lower
bounds. Symmetrically, all such claims will hold for red agents, which will allow us to
wrap up the proof at the end of the section.

We will henceforth assume the agents move according to some makespan-optimal
algorithm ALG. Per Theorem 7.1, our end-goal is to show that ALG’s makespan is at
least fmax + V.

Definition 7.4.6. A red agent R and a blue agent B are said to meet at time t if

sgn (Rx(t− 1)−Bx(t− 1)) ∈ {1,−1}

and
sgn (Rx(t− 1)−Bx(t− 1)) ̸= sgn (Rx(t)−Bx(t)),

where sgn (·) denotes the sign (−1, 0 or 1) of an integer. (See Figure 7.6.)
Two labels P B and P R are said to meet at time t if their respective agents meet at

time t.

Definition 7.4.7. Define VB
i = 0 if during the execution of ALG, PB

i decreases its x

coordinate at every time step before it arrives at column i for the first time and before
it meets PR

n1 . Otherwise let VB
i = 1.

122

Figure 7.6 The possible outcomes of a “meeting” between blue and red agents. On
the left are two possible states of the agents at time t − 1 before meeting, and on the
right are the possible states they can transition into after meeting.

t− 1 t

Define VR
i = 0 if during the execution of ALG, PR

i increases its x coordinate at
every time step before it arrives at column n − i + 1 for the first time and before it
meets PB

n2 . Otherwise let VR
i = 1.

Informally speaking, the values VB
i and VR

i are a measure of whether a given label
ever performs a movement that will propagate backwards and slow down all the labels
behind it. We will see how this occurs in Lemma 7.4.10, but the intuitive idea is this: if
there is any time step where, say, the label PB

i doesn’t move on the x axis towards its
final destination (which must be the column i or to the left of it), then every label P B

j

with j > i might get obstructed by this movement due to a back-propagating slowdown.
For technical reasons apparent in the proof of Lemma 7.4.10, we want to only factor
such movements into our bound if they occur before PB

i meets the leftmost red label
PR

n1 .
The general plan is to eventually tie Definition 7.4.7 to the value V in Defini-

tion 7.4.4.

Lemma 7.4.8. Let ti be the first time when PB
i reaches column i, i.e. an agent with

label i arrives at column i for the first time. Then ti ≥ |front(PB
i)|+VB

i .

Proof Since in the initial configuration PB
i sees i− 1 blue agents in front of it, we have

that ∣∣∣(PB
i)x − i

∣∣∣ =
∣∣∣front(PB

i)
∣∣∣

(e.g., see Figure 7.7a). Hence PB
i requires at least |front(PB

i)| horizontal moves to get
to column i, and hence requires this many time steps (Observation 7.4.5). If VB

i = 1
then PB

i performs a non-leftward movement before arriving at column i, and this adds
one time step. ■

Observation 7.4.9. A given label P B cannot meet more than one label at any time
step.

123

Proof A given agent A cannot meet more than one agent at any time step, since there
are only two rows in the grid (see Figure 7.6). Due to Observation 7.4.5, the same is
true of labels. ■

We now proceed to the proof of the main technical lemma of this section.

Lemma 7.4.10. Let tfinal be the makespan of ALG on the given initial configuration.
Then for any 1 ≤ i ≤ n2,

tfinal ≥
∣∣∣front

(
PB

i (0)
)∣∣∣+ ∣∣∣back

(
PB

i (0)
)∣∣∣+ VB

i

Proof At time tfinal, P B
i must be located at or to the left of column i (see Figure 7.7a).

Let ti denote the first time P B
i reaches column i, and let

bi = |front(PB
i)|+VB

i .

In Lemma 7.4.8 we show that ti ≥ bi. Note that ti = bi if and only if PB
i moves left at

all times t < ti except at most VB
i time steps.

We will prove the lemma by tracking PR
n1 . At time t = 0, since the initial configu-

ration is normal, PR
n1 is the leftmost agent. Hence, between time 0 and tfinal it ought

meet PB
i . Let Mi be the time of their first meeting, and Ci be the x-coordinate of PB

i

at time Mi.
We separate the proof into cases.
Case 1. Assume Ci ≤ i. If Ci ≤ i then Mi ≥ ti ≥ bi. Since in a sorted configu-

ration PR
n1 must be located to the right of all blue-occupied and empty columns, PR

n1

must meet the blue labels PB
i+1,PB

i+2, . . . ,PB
n2 before time tfinal. By Observation 7.4.9,

this must take n2 − i = |back(PB
i)| time ticks. Hence in total ALG requires at least

|front(PB
i)|+|back(PB

i)|+VB
i time steps to complete, as desired. (See Figure 7.7b)

Case 2. Assume Ci > i. In this case, we claim that PB
i+1 cannot reach column Ci

before time Mi + 2. If column Ci is a mixed column at time Mi then no agent can
move into Ci at time Mi + 1 (see Figure 7.7c). Otherwise, Ci is occupied by PB

i , while
PR

n1 occupies Ci + 1 in a different row than PB
i . Since both rows are obstructed by an

agent, there is no empty location that will enable PB
i+1 to move into column Ci before

time Mi + 2.
The label PB

i+1 must reach column i + 1 before time tfinal. By the above, PB
i+1 can

reach column Ci for the first time only 2 time steps after PB
i . The fastest PB

i can reach
column i + 1 is within bi − 1 time steps, and this can only occur when it is able to
move left at every time step after it reaches column Ci. Hence the fastest time PB

i+1
can reach column i + 1 is bi − 1 + 2.

We can now repeat the argument above for PB
i+1. Note that by Observation 7.4.9,

PB
i+1 cannot meet PR

n1 before time Mi + 1. We split the argument into the same two
cases:

124

Figure 7.7 Lemma 7.4.10. (a) At time t = 0, PB
i is at distance |front(P)| from

column i. (b) Case 1: Ci ≤ i. PR
n1 must meet at least |back(P i

B)| blue agents after
meeting P i

B. (c) Case 2: Ci > i. PB
i+1 needs at least two time steps to enter column

Ci, and at least bi + 1 time steps to arrive at column i + 1.∣∣∣front(PB
i)
∣∣∣

i

front(PB
i)

PR
n1

PB
i

(a)

. . .

iCi

PR
n1

PB
i

∣∣∣back(PB
i)
∣∣∣ unmet agents

(b)

.

i i + 1 Ci PB
i PB

i+1PR
n1

(c)

125

In Case 1, we assume PB
i+1 reaches column i + 1 before it meets PR

n1 or at the same
time step. Moreover, PR

n1 must spend n2 − i − 1 = |back(PB
i)|−1 time steps meeting

the blue labels PB
i+2,PB

i+3, . . . ,PB
n2 . Since PB

i+1 needs at least bi − 1 + 2 time steps to
reach column i + 1, we have that tfinal ≥ bi + |back(PB

i)| just like before, and we are
done.

In Case 2, PB
i+1 meets PR

n1 before reaching column i + 1. Denote the x-coordinate
of PB

i+1 at the time of the meeting by Ci+1. By the same argument as before, PB
i+2 can

arrive at column Ci+1 only 2 time steps after PB
i+1. PB

i+1 can arrive at column i + 2
within bi + 1− 1 time steps only if it moves left at every time step after meeting PR

n1 .
Hence like in the previous argument, the fastest time PB

i+2 can reach column i + 2 is
bi + 2.

We can extend this exact argument by induction to all the blue agents PB
i+3, . . .,

PB
n2 . At every stage of the induction we separate into two cases. In the first case, PB

j

arrives at column j before it meets PR
n1 or at the same time step, in which case we can

show that tfinal ≥ bi + |back(PB
i)|. In the second case, PB

j meets PR
n1 before reaching

column j, which implies it needs at least bi + (j − i) time steps to arrive at column j.
By continuing the induction up to PB

n2 we deduce that the makespan must be at least

bi + (n2 − i) = bi + |back(PB
i)|= |front(PB

i)|+|back(PB
i)|+VB

i

in all cases, so we are done. ■

Lemma 7.4.10 provides a lower bound on the makespan of any sorting algorithm
ALG with respect to a given initial configuration. The lower bound is based on the
front and backs of the blue agents and on the VB

i values induced by ALG. By symme-
try, a similar argument holds for the red agents, and consequently we may establish:

Corollary 7.2. Let tfinal be the makespan of ALG on the given initial configuration.
Then

tfinal ≥ max
(

max
1≤i≤n1

(f(P R
i (0)) + VR

i), max
1≤i≤n2

(f(P B
i (0)) + VB

i)
)

(7.1)

The somewhat unwieldy expression in Corollary 7.2 just says that tfinal is bounded
below by fmax plus at most 1, depending on the value of the Vis. Recalling Defini-
tion 7.4.4, we would like to show that the right-hand side of (7.1) is at least as large as
fmax + V. To show this will require a bit more work.

Lemma 7.4.11. If a normal initial configuration of agents has both red and blue critical
agents, then there must be some blue critical agent to the right of some red critical agent.

Proof To prove the Lemma we will assume that the claim is wrong and deduce a
contradiction.

Suppose there exists an initial configuration with red and blue critical agents, where
all the red critical agents are to the right of all the blue critical agents. Let A2 be some

126

Figure 7.8 A fictitious configuration with critical agents A2 (blue) and A3 (red) not
facing each other, per the construction given in Lemma 7.4.11. Column ranges between
agents are marked (I − V).

A1 A2 A3 A4
I II III IV V

blue critical agent and A3 be some red critical agent. Let A1 be the right-most red
agent to the left of A2, and A4 the left-most blue agent to the right of A3. We know
these agents exist since the initial configuration is normal. Denote the areas between
the agents in the following manner: I denotes the set of columns to the left of A1,
II denotes the columns between A1 and A2, and so forth until V , which denotes the
columns to the right of A4. This construction is illustrated in Figure 7.8.

Denote by Ex, Rx and Bx, respectively, the number of empty, red-occupied, and
blue-occupied columns in the set x ∈ {I, II, . . . , V }. We will write down the value of
f(·) for all four agents Ai. By definition,

f(A2) = RI + EI + 1 + EII + BIII + 1 + BV ,

where the first +1 counts A1, and the second +1 counts A4. Similarly,

f(A3) = RI + 1 + RIII + EIV + 1 + BV + EV

f(A1) = RI + BII + EII + 1 + BIII + EIII + EIV + 1 + BV + EV

f(A4) = RI + EI + 1 + EII + RIII + EIII + 1 + RIV + EIV + BV

By algebra, we have that if BIII ≥ RIII then f(A1) ≥ f(A3), and otherwise
f(A4) > f(A2). In the case f(A1) ≥ f(A3), we have by definition that A1 is a red
critical agent to the left of the blue critical agent A2, in contradiction to our initial
assumption. In the case f(A4) > f(A2), we arrive at a contradiction, since f(A4)
cannot exceed fmax = f(A2). This completes the proof. ■

Let us now show that Corollary 7.2 bounds from above our desired lower bound of
fmax + V, by proving the following:

Lemma 7.4.12.

max
(

max
1≤i≤n1

(f(P R
i (0)) + VR

i), max
1≤i≤n2

(f(P B
i (0)) + VB

i)
)
≥ fmax + V (7.2)

Proof The case where V = 0 is trivial, since the maximum of f taken over all agents
is by definition fmax and our VR

i ,VB
i s are non-negative. So let us assume V = 1.

By definition, this means either (a) there is a critical agent A that sees another agent

127

immediately in front of it in the initial configuration, or (b) there are two critical agents
of different colors in the initial configuration.

In case (a), let us suppose without loss of generality that A is red, and let ord(A) = i.
Then necessarily f(P R

i (0)) = fmax and, since A cannot move horizontally nor change
labels in the first time step of ALG, VR

i = 1. Hence f(P R
i (0)) + VR

i = fmax + V which
proves Inequality (7.2).

In case (b), Lemma 7.4.11 tells us that there exists a pair of red and blue critical
agents AR and AB facing each other. Let ord(AR) = i and ord(AB) = j. If AR

and AB do not change labels before meeting (i.e., for all times t prior to the meeting,
ord(AR, t) = i and ord(AB, t) = j), then necessarily one of the labels PR

i or PB
j must

move to the upper row so that they can bypass each other. Hence VR
i = 1 or VB

j = 1,
and similar to case (a), this establishes Inequality (7.2).

Otherwise, either AR or AB changes their label before meeting. Let us suppose
wlog that AR changes its label at time t0, i.e. ord(AR, t0− 1) = i∧ ord(AR, t0) ̸= i. At
t0, AR’s label can be either i+1 or i−1. It is straightforward to verify by hand that in
either case, VR

i = 1, since in order for two adjacent agents to swap labels, one of them
must wait or move toward the other, and this causes VR to become 1 for both agents
that swapped labels. Hence, similar to case (a) and (b), this establishes Inequality
(7.2). ■

Corollary 7.2 and Lemma 7.4.12 together establish the lower bound fmax + V of
Theorem 7.1. It remains to show an algorithm that achieves this bound exactly.

7.5 Optimal algorithm for normal configurations

In this section we present a simple agent sorting algorithm. We show that despite
its simplicity, the algorithm is optimal for normal initial configurations, in the sense
that its makespan always meets the lower bound established in Theorem 7.1, thus
completing the proof of Theorem 7.1.

Algorithm 7.1 is simple to describe: aim to move in your desired direction, left for
blue agents and right for red agents. The only twist is the first tick, where either all
red or all blue agents move to the second row. Which color should we move vertically?
The answer comes from Theorem 7.1; we want to avoid paying more than fmax + V
time steps by moving vertically only the color without critical agents. This enables
critical agents to move horizontally without being delayed by a vertical movement. If
there are red critical agents - we move blue agents to the second row, otherwise red
agents are moved.

Denote the above algorithm ALG1. To establish its makespan, let us first study the
simple scenario where all blue agents are in the one row and all red agents are in the
other, and at every time step they simply move horizontally in the desired direction:

128

Algorithm 7.1 Optimal sorting algorithm for unsorted normal initial configurations.
init t← 0
for each agent A ∈ A do

calculate f(A) to determine the critical agents
end for
if there are critical agents of both colors then

c← red
else

c← the color of critical agents
end if
for each agent A ∈ A do

if A’s color is c then
move one step in the desired direction if the adjacent location in that direction

is not occupied at the beginning of time t = 0
else

move to the second row
end if

end for
while configuration is not sorted do

t← t + 1
for each red agent ∈ A do

if right-adjacent location is empty at the beginning of t then
move one step right

end if
end for
for each blue agent ∈ A do

if left-adjacent location is empty at the beginning of t then
move one step left

end if
end for

end while

129

Lemma 7.5.1. Consider a normal configuration where all red agents are at the top
row and all blue agents are at the bottom row, and every column contains at most one
agent.

Let ALG⊥1 denote the algorithm that says: at every time step, red agents move right
unless the adjacent location to their right is occupied, and blue agents move left unless
the adjacent location to their left is occupied. Then the makespan of ALG⊥1 on this
configuration is at most fmax.

Proof For any red agent R, we define front⊥(R, t) as the set of all empty locations on
R’s row which are to the right of R at time t. Furthermore, define back⊥(R, t) to be
the set of all red agents to the left of R.

Similarly, for any blue agent B, we define front⊥(B, t) as the set of all empty
locations on B’s row which are to the left of B at time t, and define back⊥(B, t) to be
the set of all blue agents to the right of B.

For every agent A define f⊥(A, t) at time t in the following manner:

• if front⊥(A, t) contains no empty locations, f⊥(A, t) = 0

• otherwise, f⊥(A, t) = |front⊥(A, t)|+|back⊥(A, t)|

In the Lemma’s assumed agent configuration, |front⊥(A, 0)|> 0 for any agent A.
Hence for all agents f⊥(A, 0) ̸= 0. Recalling Definition 7.4.2, this means f⊥(A, 0) =
f(A) for any agent A. Hence, there is a critical agent A for which f⊥(A, 0) = fmax.

Let us define f⊥max(t) = maxA∈A f⊥(A, t). By the above, f⊥max(0) = fmax. When
f⊥max(t) = 0, the agent configuration is sorted, since every agent has moved as far as it
could in its desired direction. We will show that f⊥max(t) decreases every time step as
long as it is not 0, which completes the proof.

At time t, let A∗ be an agent for which f⊥(A∗, t) = f⊥max(t). Let us suppose w.l.o.g.
that A∗ is a red agent. Note that if a red agent R is an adjacent rightward neighbor of
A∗ at time t then

(a) if f⊥(R, t) = 0 then f⊥(A∗, t) = 0, and

(b) f⊥(A∗, t) = f⊥(R, t)− 1 otherwise.

(b) is of course impossible, since A∗ maximizes f⊥(·, t). Hence, if A∗ cannot move
right at time t, we have that f⊥(A∗, t) = fmax(t) = 0, so the configuration is sorted.
Otherwise, A∗ sees an empty location immediately to its right, and it moves to it at
time t. This causes f⊥(A∗, t) to decrease by 1.

Since the above argument is true for any agent that maximizes f⊥(·, t), we see that
as long as f⊥max(t) ̸= 0, fmax decreases at every time step. ■

An immediate corollary of Lemma 7.5.1, which (as mentioned in the introduction)
relates to asymmetric simple exclusion processes and may be of independent interest,
is:

130

Corollary 7.3. Assume j agents located on a single row (without access to a spare
row) move right at every time step where they are unobstructed by another agent. Then
after exactly fmax time steps, the j right-most columns are occupied by an agent.

Theorem 7.4. For a given initial normal configuration, ALG1’s makespan is fmax+V.

Proof By Theorem 7.1, we know the makespan is at least fmax + V. Let us show it is
at most this.

Let us define f ′max to be calculated like fmax in Definition 7.4.2, but over the agent
configuration at time t = 1. Note that fmax ≥ f ′max, since ALG1 never moves agents
in a way that can increase this value.

Note that from time t = 1 onwards, all agents are on two separate rows and ex-
ecute ALG⊥1 (of Lemma 7.5.1) in their respective row. Hence, by Lemma 7.5.1, our
algorithm’s makespan is at most f ′max + 1 ≤ fmax + 1. Hence, if V = 1, we are done.

Let us deal with the case V = 0. We assume, w.l.o.g., that there are red critical
agents. Since V = 0, this means there are no blue critical agents, and also that every
red critical agent takes a step to the right in the first time step of the algorithm. Since
the maximum value of f is obtained over a red agent, we know that

max
B∈B

f(B) ≤ fmax − 1.

Furthermore, since every red critical agent moves right at time t = 0, when we
re-calculate f over the configuration at time t = 1, fmax will have decreased by 1 (since
every critical agent A has shifted an empty location from front(A) to back(A)). Hence
f ′max = fmax − 1, and so our makespan is at most fmax, as claimed. ■

Theorem 7.4 and the lower bound result of the previous section establish Theo-
rem 7.1. We see that ALG1 is an optimal algorithm for physically sorting any normal
initial configuration. In the next section, we will extend this result to non-normal
configurations.

7.6 Non-normal initial configurations

In the previous sections we have handled a subset of all the possible initial configu-
rations - the normal configurations (Definition 7.3.1). In this section, we extend our
previously derived lower bound to all possible initial configurations, and extend our
optimal algorithm to such configurations.

Definition 7.6.1. Consider the configuration of agents at time t. Let R be the left-
most red agent and let B be the rightmost blue agent. The maximal normal sub-
configuration at time t is the set of all columns in the interval [Rx(t), Bx(t)]. Note
that this set is empty when Rx(t) > Bx(t).

Furthermore, let S be the (possibly empty) maximal normal sub-configuration at
time t = 0. Let Sc = A \ S be the set of columns outside S.

131

We define a function f∗ to equal f for all agents in (the columns of) S, and for any
agent A in Sc we set f∗(A) = |front(A)|. We further define f∗max = max

A∈A
f∗(A).

Definition 7.6.2. An agent A ∈ A for which f∗(A) = f∗max is called an f∗-critical
agent.

We will define V∗ to closely resemble V:

Definition 7.6.3. V∗ will equal 1 if:

1. There is both a red and a blue f∗-critical agent and S ̸= ∅, or

2. There is an f∗-critical agent such that, in the initial configuration, another agent
is located immediately in front of it and f∗max > 0.

Otherwise, V∗ = 0.

Lemma 7.4.10 can now be extended to non-normal initial configurations as follows:

Lemma 7.6.4. The makespan of any algorithm that brings the initial configuration to
a sorted configuration is at least f∗max + V∗.

Proof The argument is a rather straightforward generalization of the previous sections.
We assume first that S ̸= ∅. We note that in this case, agents outside S are not

f∗-critical. Indeed, for any same-colored agents A1 ∈ S and A2 /∈ S, front(A2) ⊊
front(A1). Therefore, we trivially have that f∗(A2) < f∗(A1). We note that the
argument in Lemma 7.4.10 generalizes genuinely to agents inside S. Consequently,
Lemma 7.4.10 provides a lower bound on makespan, since f ≡ f∗ on S and when
restricted to this set, V∗ is equivalent to the definition of V.

Now let us assume S = ∅, i.e. in the initial configuration no pair of red and blue
agents face each other. Each label PB

i must traverse at least |front(PB
i (0))| columns

before a sorted configuration can be reached and the same claim is true for PR
i . In

particular, by definition, f∗-critical agents will need to traverse f∗max columns to reach
their position. If V∗ = 0, this establishes our desired lower bound.

If V∗ = 1, we have that there is an f∗-critical agent that is blocked by an adjacent
agent, hence cannot change columns in the first time step. Furthermore, since f∗max > 0,
the configuration is not sorted, so this agent must traverse at least one column. Hence,
at least one f∗-critical agent must spend V∗ ticks before starting to move horizontally,
establishing a lower bound of f∗max + V∗ time steps before a sorted configuration is
reached. ■

We are now interested in designing an optimal physical sorting algorithm for non-
normal configurations - Algorithm 7.2. The algorithm we present will work as follows:
the agents that are inside S at time t = 0 will continue to execute Algorithm 7.1 as
before, whereas all agents initialized outside S will execute an “alternating row split”

132

strategy. These strategies are executed independently by the two sets of agents: agents
initialized in S will not reach the Sc columns fast enough to interact with agents
initialized outside Sc.

Definition 7.6.5. Let r0 be the label of the leftmost red agent in Sc and b0 be the
label of the rightmost blue agent in Sc at time t = 0. PR

r0(0) and PB
b0

(0) will be called
red and blue anchor agents respectively.

The “alternating row split” strategy is based on the following simple idea: at time
t = 0, split agents outside S in an alternating fashion between the two rows, so that
there is at least one empty space between each pair of same-colored agents in the same
row (see Figure 7.9). Once this is done, each agent in Sc can move horizontally in its
desired direction at every time step without any further delays - see Figure 7.9.

Figure 7.9 We illustrate 5 time steps of a run of Algorithm 7.2 on a non-normal initial
configuration. The maximal normal sub-configuration S is highlighted in green . The
left-hand and right-hand sides of Sc are highlighted in blue and red respectively.
The blue PB

b0
and red PR

r0 anchor agents are circled in blue and red respectively.

(a) t = 0

(b) t = 1

(c) t = 2

(d) t = 3

(e) t = 4

133

Algorithm 7.2 Optimal sorting algorithm for any unsorted initial configuration.
init t← 0, Q ← all agents initialized in the columns of S, P ← all agents initialized
in the columns of Sc

for each agent A ∈ A do
calculate f∗(A) to determine the critical agents
if there are f∗-critical agents of both colors then

c← red
else

c← the color of the f∗-critical agents
end if
move all agents in Q whose color is not c to the second row

end for
for each agent A ∈ P do

if A is red and (r0 − ord(A, 0)) is odd then
move A to the second row

else if A is blue and (b0 − ord(A, 0)) is odd then
move A to the second row

end if
end for
for each agent A ∈ A do

if A has not moved due to a previous step of the algorithm then
move one step in the desired direction (left for blue agents, right for red agents)

if the adjacent location in that direction is not occupied at the beginning of time t = 0
end if

end for
while the configuration is not sorted do

t← t + 1
for each red agent A do

if there is a mixed, empty, or blue-occupied column to the right of A at the
beginning of time t then

move one step right
end if

end for
for each blue agent A do

if there is a mixed, empty, or red-occupied column to the left of B at the
beginning of time t then

move one step left
end if

end for
end while

134

We will show that Algorithm 7.2 is an optimal sorting algorithm.

Lemma 7.6.6. If S = ∅, the makespan of Algorithm 7.2 is exactly

f∗max + V∗

Proof Lemma 7.6.4 shows f∗max +V∗ is a lower bound on the makespan, so we just need
to prove that it is also an upper bound.

If S = ∅, then at time t = 0 all the agents split between the two rows in an
alternating fashion (see Figure 7.9). In every subsequent time step any agent that has
not reached its final sorted position moves horizontally along its row. Thus, each agent
A ∈ Sc takes at most front(A) + 1 ≤ f∗(A) + 1 time steps to reach its final position
in the sorted configuration.

We split the proof into cases.
Case 1: There are only red f∗-critical agents. Recalling Definition 7.6.5, we infer

that the red anchor agent is necessarily f∗-critical. Denote this agent W .
Suppose W moves horizontally (i.e., rightwards) at time t = 0. It will continue to

do so at every subsequent time-step, thus reaching its desired column in front(W) =
f∗(W) time steps. Note that if W moves horizontally at time t = 0 according to
Algorithm 7.2, it is necessarily the only red f∗-critical agent, because it has an empty
space in front of it that no other agent counts towards its f∗ value. Thus in this case,
V∗ = 0.

Suppose on the other hand that W doesn’t move horizontally at time t = 0. Then,
since W is a critical agent, V∗ = 1, and W will reach its desired column in front(W) +
1 = f∗(W) + V∗ time steps.

Every other agent A reaches its desired column in at most f∗(A) + 1 ≤ f∗(W) +V∗

time steps. Thus Algorithm 7.2’s makespan is at most f∗max + V∗.
Case 2: There are only blue f∗-critical agents. This is the same as case 1.
Case 3: There are both red and blue f∗-critical agents. Since when S = ∅, red and

blue agents both move independently on disjoint sets of columns, thus we may combine
the arguments of Case 1 and Case 2 to infer that the makespan is f∗max + V∗. ■

Observation 7.6.7. If S ̸= ∅ then any f∗-critical agent is necessarily in a column of
S at time t = 0.

Proof Suppose there is an f∗-critical agent W in a column of Sc. Assume without loss
of generality that W is red. Since S ̸= ∅, there is necessarily a red agent W ′ in a column
of S with smaller x-coordinate than W . We have that |front(W ′)|> |front(W)|, since
everything that is in front of W is also in front of W ′, but front(W ′) contains a
blue-occupied column between W and W ′ which is not in front(W ′). By definition
f∗(W ′) ≥ |front(W ′)|> |front(W)|= f∗(W), a contradiction to the assumption that
W is a critical agent. ■

135

Proposition 7.6.8. In every (normal or non-normal) configuration, Algorithm 7.2
completes in exactly

f∗max + V∗

time steps.

Proof If S = ∅, the claim follows from Lemma 7.6.6. We assume therefore that S ̸= ∅.
Note that at every time step starting at t = 1 all agents execute the same logic: red

agents move right and blue agents move left whenever they are unobstructed.
In Algorithm 7.2, after time t = 0, any blue or red agent initialized in the columns

of Sc can move in its desired direction until it settles in its final column in the physical
sorting. Furthermore, agents initialized in the columns of S need at least three time
ticks to reach any column of Sc (see Figure 7.9). Therefore, agents initialized in S’s
columns can never catch up with agents initialized in Sc before the Sc agents reach
their final sorted position. In other words, agents in Sc never obstruct agents in S.
Moreover, the agents initialized in S arrive at their final sorted position strictly later
than agents in Sc.

Let r be the number of red agents in the columns of Sc. Note that no agent
initialized in S will ever enter the rightmost r columns, since these will be occupied by
red Sc agents and Algorithm 7.2 does not let two red agents occupy the same column
at any time step. Analogously, let b be the number of blue agents in the columns of
Sc. Then no agent initialized in S will ever enter the leftmost b columns.

Let C∗ be our initial agent configuration, and let C be the initial configuration
where we delete all agents in the Sc columns and delete the rightmost r columns and
the leftmost b columns. It is not difficult to show from the previous two paragraphs
that the makespan of Algorithm 7.2 on C∗ is the same as the makespan of Algorithm 7.1
on C.

According to Observation 7.6.7, all critical agents in the configuration C∗ are ini-
tialized in S. Let A be any red agent initialized in S. Every red agent that we remove
from C∗ to create C (i.e., red agents in C∗ \ C) increases |front(A)| by 1. Every column
we remove from the right-hand side decreases |front(A)| by 1 and offsets this. Thus
the value of |front(A)| does not change between C and C∗. The size of front similarly
remains unchanged for every blue agent initialized in S. |back(A)| remains unchanged
for red and blue agents by definition.

Consequently, f∗max + V∗ over C∗ is equal to fmax + V over C. Thus the makespan
of Algorithm 7.2 over C∗ is f∗max + V∗. ■

In conclusion, the makespan of any sorting algorithm over any initial configuration
is at least f∗max +V∗. This lower bound is precise; Algorithm 7.2 meets it exactly. This
generalizes Theorem 7.1 to non-normal configurations.

136

Theorem 7.5. The makespan of any sorting algorithm over a given (normal or non-
normal) initial configuration is at least f∗max + V∗. This lower bound is precise; Algo-
rithm 7.2 meets it exactly.

7.7 Discussion

We studied the problem of sorting vehicles or “agents” on a horizontal two-row highway,
sending red vehicles to the right and blue vehicles to the left as quickly as possible. We
derived an exact lower bound for the amount of time it takes an arbitrary configuration
of such vehicles starting at the bottom row to arrive at a sorted configuration, and
presented an optimal sorting algorithm that attains this lower bound.

The instance-optimal algorithm we presented for sorting normal configurations (Al-
gorithm 7.1) requires global knowledge of the initial agent configuration to compute
fmax, as the value of fmax determines which color of agent it raises to the upper row.
Consider the algorithm that, instead of computing fmax, simply raises all the blue
agents to the upper row, and otherwise proceeds the same as Algorithm 7.1. This is a
straightforward algorithm that requires no global knowledge; in fact, it can be imple-
mented by decentralized agents with local sensing and no communication (see Section
7.7.1, Algorithm 7.3). Theorem 7.1 shows that this algorithm is at most 1 time step
slower than Algorithm 7.1. Figure 7.10 in Section 7.7.1 shows an example run of both
algorithms. We find it significant that the instance-optimal strategy for this problem
can be approximated by a very simple, decentralized and local sensing-based algorithm.

It is not clear whether a simple decentralized strategy exists for non-normal config-
urations. In our general sorting algorithm (Algorithm 7.2), agents must know whether
they are in the maximal subnormal configuration or outside of it to determine their
movements, and so a local decentralized algorithm with nearly identical performance
is more difficult to conceive of.

In future work, it will be interesting to consider the following extensions of our
problem:

1. Settings where there are more than two rows which the agents may use, and where
agents are initialized on arbitrary rows and columns.

2. General permutations. Suppose that instead of just 2 colors, there are k different
colors. What is the optimal way to sort the agents, such that all agents of color
i are between those of color i− 1 and i + 1?

3. Agents moving at different velocities, e.g., a grid square every 2 or 4 time steps
instead of 1.

Physical sorting problems such as the one described in this chapter force algorithm
designers to take into account a number of factors that are not present in more tra-
ditional settings, such as physical motion and collision avoidance. When compared to

137

traditional combinatorial algorithms, we believe that there is a lot of room for further
theoretical developments in this domain, as even results that at a glance might seem
straightforward currently require specialized analysis.

7.7.1 An almost optimal distributed solution

The proposed centralized solution can be easily parallelized to produce an almost trivial
decentralized algorithm, that, nonetheless, sorts agents in only a single tick slower than
the instance-optimal Algorithm 7.1. Every agent A has a memory bit d which is used to
track whether the current time step is 0 or not. At time 0, all the blue agents move to
the upper row. In Algorithm 7.3, we describe what each (decentralized) mobile agent
does at every time tick t:

Algorithm 7.3 Almost optimal decentralized sorting algorithm for an unsorted initial
normal configuration.

init memory bit d← 0
if I am a blue agent then

if d = 0 then
move to the second row

else if adjacent location to the left is empty then
move one step left

end if
else if adjacent location to the right is empty then

move one step right
end if
d← 1

Based on the analysis of Theorem 7.1, this algorithm is at most 1 time step slower
than the optimal time for any given initial configuration. The additional time tick
is incurred because in an instance-optimal solution, sometimes we must raise the red
agents to the second row rather than the blue agents. In Figure 7.10, we provide an
example run comparing Algorithm 7.1 and Algorithm 7.3.

138

Figure 7.10 A side-by-side algorithm execution on a given initial grid configuration.
(Left) centralized Algorithm 7.1, (right) distributed Algorithm 7.3. The centralized
algorithm finishes 1 time step before the decentralized algorithm (t = 7 and t = 8
respectively).

139

140

Chapter 8

Conclusion

Life tells a similar story whether viewed at the level of the microorganism (an ant, a
germ, a virus) or at the level of the macroorganism (a family, a company, a culture). In
this story organisms evolve local rules of behavior that help them grow, compete, coop-
erate, make and unmake. The best and most resilient rules propagate through time and
define our world’s future. The topic of this thesis was understanding and designing local
rules of behavior that are both natural and effective. Under the paradigms of multi-
agent systems on graphs and ant-like swarm robotics we studied two mathematical
models of social insects, algorithms for swarm deployment in unknown environments,
and the traffic management-related problem of physical sorting. We hope that the re-
sults we obtained in their totality make a convincing argument that the local, precise
and expressive language of swarm-robotic algorithms is an important vehicle for ex-
ploring what makes Mother Nature’s rules so resilient and successful. We hope further
that the models, techniques, and ideas in this thesis serve as a useful starting point for
any reader interested in the mathematical analysis of multi-agent systems on graphs.
We believe that the bag of mathematical tools we collected is useful beyond just the
scope of this dissertation, and has potential applications to the analysis of many more
types of multi-agent systems.

We would like to finish by briefly discussing two manuscripts that did not make it
into the main body of this work.

Stigmergy-based, Dual-Layer Coverage of Unknown Indoor Regions. In
the work [RAB22] we expand on the topic of Chapter 6 and present several algorithms
for uniformly covering an unknown indoor region with a two-layered swarm of mobile
agents. Same as Chapter 6, these algorithms draw upon the meta-concept of “stig-
mergy” - communication via the environment - by having robots that settle inside the
region become part of the environment in the form of beacons that guide mobile robots
to as-yet unexplored locations.

The algorithms presented in [RAB22] improve upon the DFS-based algorithm of
Chapter 6 by introducing a backward propagating information diffusion process through

141

which settled agents are able to prevent mobile agents from entering already-explored
areas, redirecting them to more fruitful avenues of search instead. Unlike Chapter 6,
and unlike many other works in this area, we consider the requirement of informing an
outside operator with limited information that the coverage mission is complete. Even
with this additional requirement we show, both through simulations and mathematical
proofs, that the dual role concept results in linear-time termination, while also best-
ing well-known algorithms in the literature (such as Hsiang et al.’s BFLF and DFLF
[HAB+04]) in terms of energy use.

Multi-Agent Distributed and Decentralized Geometric Task Allocation.
In the work [AKB+22] we explore the topic of dispersing a robotic swarm of autonomous
mobile agents over a region to find and fulfill an a priori unknown set of tasks. The
location of the tasks and the number of agents required to complete them are not given
to the agents in advance, and may even change over time. The goal of the agents is
to explore the environment to find the tasks, and to position themselves in the region
based on the requirements of each task. The agents must also relocate in response to
changes in the set of tasks - for example, agents that complete a given task should go
on to help other agents complete their tasks. Examples of this kind of setting include
search and rescue missions, where agents must find and assist an unknown number
of people, or forest fires, where the spread and intensity of fire evolves over time and
requires varying numbers of firefighting drones to cover.

Unlike the works that we explored in this thesis, the setting of [AKB+22] is not
graphs: we assume the agents’ topology is some closed subregion L of the plane R2

(such as the unit square L = [0, 1] × [0, 1]) within which they are able to move about
freely, and that the agents’ tasks are represented by an a priori unknown scalar field
Φ(x, y) that determines how many agents are needed in each location. Fundamentally,
however, this is still a work about swarm robotics and the ants paradigm - the agents
are autonomous, oblivious and indistinguishable, and have finite sensing range. Swarm
robotics is uniquely positioned to handle task allocation in unknown environments,
because the agents can quickly cover a very large area to locate the tasks, and because
there are enough agents that we need not worry about some of the agents not finding
a task to work on.

In [AKB+22] we propose to solve task allocation problems through attraction-
repulsion dynamics, wherein agents repulse each other and are attracted to locations in
the region determined by Φ. The heuristic behind this idea is that the repulsive forces
agents affect each other with cause the swarm to expand uniformly, thus covering the
region of interest L and discovering the values of Φ. Attractive forces, on the other
hand, cause agents to accumulate according to tasks’ requirements.

Figure 8.1 shows a task allocation scenario where agents, starting in the middle
of the region, search for tasks placed randomly within the region through attraction-
repulsion dynamics. Each task demands a different number of agents to complete.

142

When a sufficient number of agents reach a task, the task is completed and removed
from Φ, freeing agents to move to other tasks. Figure 8.2 shows a task allocation where
tasks (not drawn) are static and placed in the shape of a plane, causing the agents to
enter said formation and demonstrating the precision and scalability of our approach.

Figure 8.1 Simulation of a task allocation scenario where tasks disappear upon reach-
ing the demanded number of agents. Agents move according to attraction-repulsion
dynamics. The current time step is written in the top left corner of each frame. Agents’
sensing range is depicted by the transparent gray disk (sensing range is depicted for a
single agent to prevent visual clutter). 200 agents begin at the center of the region and
expand outward, finding targets. The total agent demand of the targets is 204.

Figure 8.2 Simulation of a task allocation scenario with targets placed in a plane-
shaped configuration. The total agent demand of the targets is 1240, and the number
of agents is 2000. Targets not drawn for the sake of visual clarity. Agent sensing radius,
not depicted in the image, is 1/10th of the bounding box.

143

144

Bibliography

[AA15] Gil Ariel and Amir Ayali. Locust collective motion and its modeling.
PLOS Computational Biology, 11(12):e1004522, December 2015. Freder-
ick R. Adler, editor. url: https://doi.org/10.1371/journal.pcbi.1004522.

[AAA16] Guy Amichay, Gil Ariel, and Amir Ayali. The effect of changing topog-
raphy on the coordinated marching of locust nymphs. PeerJ, 4:e2742,
December 2016. url: https://doi.org/10.7717/peerj.2742.

[AAB21] Michael Amir, Noa Agmon, and Alfred M Bruckstein. A discrete model
of collective marching on rings. International Symposium Distributed Au-
tonomous Robotic Systems:320–334, 2021.

[AAB22] Michael Amir, Noa Agmon, and Alfred M. Bruckstein. A locust-inspired
model of collective marching on rings. Entropy, 24(7):918, June 2022.
url: http://dx.doi.org/10.3390/e24070918.

[AB19a] Michael Amir and Alfred M Bruckstein. Probabilistic pursuits on graphs.
Theoretical Computer Science, 2019.

[AB19b] Michael Amir and Alfred M. Bruckstein. Minimizing Travel in the Uni-
form Dispersal Problem for Robotic Sensors. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’19, pages 113–121, Richland, SC. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2019. (Visited on
07/30/2022).

[AB20] Michael Amir and Alfred M. Bruckstein. Fast uniform dispersion of a
crash-prone swarm. In Proceedings of Robotics: Science and Systems,
RSS ’20, 2020.

[ABC17] Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal
geometric algorithms. Journal of the ACM (JACM), 64(1):1–38, 2017.

[AF95] David Aldous and James Fill. Reversible markov chains and random
walks on graphs, 1995.

145

https://doi.org/10.1371/journal.pcbi.1004522
https://doi.org/10.7717/peerj.2742
http://dx.doi.org/10.3390/e24070918

[AHK06] Noa Agmon, Noam Hazon, and Gal A Kaminka. Constructing spanning
trees for efficient multi-robot coverage. In Proceedings 2006 IEEE In-
ternational Conference on Robotics and Automation, 2006. ICRA 2006.
Pages 1698–1703. IEEE, 2006.

[AHKG+08] Noa Agmon, Noam Hazon, Gal A Kaminka, MAVERICK Group, et al.
The giving tree: constructing trees for efficient offline and online multi-
robot coverage. Annals of Mathematics and Artificial Intelligence, 52(2-
4):143–168, 2008.

[AKB+22] Michael Amir, Yigal Koifman, Yakov Bloch, Ariel Barel, and Alfred M.
Bruckstein. Multi-agent distributed and decentralized geometric task al-
location, 2022. url: https://arxiv.org/abs/2210.05552.

[Ald85] David J Aldous. Exchangeability and related topics. In École d’Été de
Probabilités de Saint-Flour XIII—1983, pages 1–198. Springer, 1985.

[AMZ06] Sheila Abbas, Mohamed Mosbah, and Akka Zemmari. Distributed com-
putation of a spanning tree in a dynamic graph by mobile agents. In
2006 IEEE International Conference on Engineering of Intelligent Sys-
tems, pages 1–6. IEEE, 2006.

[AOL+14] Gil Ariel, Yotam Ophir, Sagi Levi, Eshel Ben-Jacob, and Amir Ayali. In-
dividual pause-and-go motion is instrumental to the formation and main-
tenance of swarms of marching locust nymphs. PloS one, 9(7):e101636,
2014.

[AP06] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for
autonomous mobile robots. SIAM Journal on Computing, 36(1):56–82,
2006.

[APB18] Yaniv Altshuler, Alex Pentland, and Alfred M Bruckstein. Introduction
to swarm search. In Swarms and Network Intelligence in Search, pages 1–
14. Springer, 2018.

[APP12] Yaniv Altshuler, Wei Pan, and Alex Sandy Pentland. Trends predic-
tion using social diffusion models. In International Conference on Social
Computing, Behavioral-Cultural Modeling, and Prediction, pages 97–104.
Springer, 2012.

[ASS16] Maksat Atagoziyev, Klaus W Schmidt, and Ece G Schmidt. Lane change
scheduling for autonomous vehicles. IFAC-PapersOnLine, 49(3):61–66,
2016.

[AYWB08] Yaniv Altshuler, Vladimir Yanovsky, Israel A Wagner, and Alfred M
Bruckstein. Efficient cooperative search of smart targets using uav swarms1.
Robotica, 26(4):551–557, 2008.

146

https://arxiv.org/abs/2210.05552

[BBH+08] Sepideh Bazazi, Jerome Buhl, Joseph J Hale, Michael L Anstey, Gregory
A Sword, Stephen J Simpson, and Iain D Couzin. Collective motion and
cannibalism in locust migratory bands. Current biology, 18(10):735–739,
2008.

[BC08] Hans-Jurgen Bandelt and Victor Chepoi. Metric graph theory and ge-
ometry: a survey. Contemporary Mathematics, 453:49–86, 2008.

[BDS08] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Deploy-
ment of asynchronous robotic sensors in unknown orthogonal environ-
ments. In International Symposium on Algorithms and Experiments for
Sensor Systems, Wireless Networks and Distributed Robotics, pages 125–
140. Springer, 2008.

[BDS13] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Uniform
dispersal of asynchronous finite-state mobile robots in presence of holes.
In International Symposium on Algorithms and Experiments for Sensor
Systems, Wireless Networks and Distributed Robotics, pages 228–243.
Springer, 2013.

[BDT13] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of mobile
robots tolerating multiple crash faults. In 2013 IEEE 33rd International
Conference on Distributed Computing Systems, pages 337–346. IEEE,
2013.

[BM86] Hans-Jürgen Bandelt and Henry Martyn Mulder. Pseudo-modular graphs.
Discrete mathematics, 62(3):245–260, 1986.

[BMB17] Ariel Barel, Rotem Manor, and Alfred M Bruckstein. Come together:
multi-agent geometric consensus. arXiv preprint arXiv:1902.01455, 2017.

[BMW97] Alfred M. Bruckstein, C. L. Mallows, and Israel Wagner. Probabilistic
pursuits on the grid. The American Mathematical Monthly, 104(4):323–
343, 1997.

[BN11] Anthony Bonato and Richard J. Nowakowski. The game of cops and
robbers on graphs. American Mathematical Society, 2011.

[Bro89] Andrei Broder. Generating random spanning trees. In 30th Annual sym-
posium on foundations of computer science, pages 442–447. IEEE, 1989.

[Bru93] Alfred M. Bruckstein. Why the ant trails look so straight and nice. The
Mathematical Intelligencer, 15(2):59–62, 1993.

[BS07] Maxim A Batalin and Gaurav S Sukhatme. The design and analysis of
an efficient local algorithm for coverage and exploration based on sen-
sor network deployment. IEEE Transactions on Robotics, 23(4):661–675,
2007.

147

[BSC+06] Jerome Buhl, David JT Sumpter, Iain D Couzin, Joe J Hale, Emma
Despland, Edgar R Miller, and Steve J Simpson. From disorder to order
in marching locusts. Science, 312(5778):1402–1406, 2006.

[BV12] Joydeep Biswas and Manuela Veloso. Depth camera based indoor mobile
robot localization and navigation. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 1697–1702. IEEE, 2012.

[CB17] Anjan Kumar Chandra and Abhik Basu. Diffusion controlled model of
opinion dynamics. Reports in Advances of Physical Sciences, 1(01):1740008,
2017.

[CD08] Ke Cheng and Prithviraj Dasgupta. Coalition game-based distributed
coverage of unknown environments by robot swarms. In Proceedings of
the 7th international joint conference on Autonomous agents and multi-
agent systems-Volume 3, pages 1191–1194. International Foundation for
Autonomous Agents and Multiagent Systems, 2008.

[CGG+08] Hugues Chaté, Francesco Ginelli, Guillaume Grégoire, Fernando Peru-
ani, and Franck Raynaud. Modeling collective motion: variations on the
vicsek model. The European Physical Journal B, 64(3):451–456, 2008.

[Cha12] Bernard Chazelle. Natural algorithms and influence systems. Communi-
cations of the ACM, 55(12):101–110, 2012.

[Cha18] Bernard Chazelle. Toward a theory of markov influence systems and their
renormalization. arXiv preprint arXiv:1802.01208, 2018.

[CMZ11] T Chou, K Mallick, and RKP Zia. Non-equilibrium statistical mechanics:
from a paradigmatic model to biological transport. Reports on progress
in physics, 74(11):116601, 2011.

[Cor08] Jorge Cortés. Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3):726–737, 2008.

[CSS00] Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider.
Statistical physics of vehicular traffic and some related systems. Physics
Reports, 329(4-6):199–329, 2000.

[CT94] Wonshik Chee and Masayoshi Tomizuka. Vehicle lane change maneuver
in automated highway systems, 1994.

[CVV99] András Czirók, Mária Vicsek, and Tamás Vicsek. Collective motion of
organisms in three dimensions. Physica A: Statistical Mechanics and its
Applications, 264(1-2):299–304, 1999.

[DFGT11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and An-
dreas Tielmann. The disagreement power of an adversary. Distributed
Computing, 24(3-4):137–147, 2011.

148

[DGK63] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem
and its relatives. Convexity, 7:101–180, 1963.

[DHM+09] Erik D Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin
S Sayedi-Roshkhar, Shayan Oveisgharan, and Morteza Zadimoghaddam.
Minimizing movement. ACM Transactions on Algorithms (TALG), 5(3):30,
2009.

[DHM09] Erik D Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx. Mini-
mizing movement: fixed-parameter tractability. In European Symposium
on Algorithms, pages 718–729. Springer, 2009.

[Die17] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,
June 2017. url: https://www.xarg.org/ref/a/3662536218/.

[Dir61] Gabriel A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathe-
matischen Seminar der Universität Hamburg, 25(1-2):71–76, April 1961.

[DP12] Dariusz Dereniowski and Andrzej Pelc. Drawing maps with advice. Jour-
nal of Parallel and Distributed Computing, 72(2):132–143, 2012. (Journal
version of the same paper from DISC2010).

[DPV15] Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asyn-
chronously at polynomial cost. SIAM Journal on Computing, 44(3):844–
867, 2015.

[DZK+18] Yucheng Dong, Min Zhan, Gang Kou, Zhaogang Ding, and Haiming
Liang. A survey on the fusion process in opinion dynamics. Information
Fusion, 43:57–65, 2018.

[EB13] Yotam Elor and Alfred M Bruckstein. Mathematical Analysis of Emer-
gent Behavior in Multi-Agent Systems. PhD thesis, Computer Science
Department, Technion, 2013.

[EET93] Hossam ElGindy, Hazel Everett, and Godfried Toussaint. Slicing an
ear using prune-and-search. Pattern Recognition Letters, 14(9):719–722,
September 1993. url: https://doi.org/10.1016/0167-8655(93)90141-y.

[Eke19] Emelie Ekenstedt. Membership-based manoeuvre negotiation in autonomous
and safety-critical vehicular systems, 2019.

[Eps12] Richard A Epstein. The theory of gambling and statistical logic. Academic
Press, 2012.

[Fey85] Richard Feynman. ”Surely you’re joking, Mr. Feynman!”: Adventures of
a Curious Character. W.W. Norton, New York, 1985.

[FK10] Natalie Fridman and Gal A. Kaminka. Modeling pedestrian crowd be-
havior based on a cognitive model of social comparison theory. Computa-
tional and Mathematical Organization Theory, 16(4):348–372, November
2010. url: https://doi.org/10.1007/s10588-010-9082-2.

149

https://www.xarg.org/ref/a/3662536218/
https://doi.org/10.1016/0167-8655(93)90141-y
https://doi.org/10.1007/s10588-010-9082-2

[FS11] Zachary Friggstad and Mohammad R Salavatipour. Minimizing move-
ment in mobile facility location problems. ACM Transactions on Algo-
rithms (TALG), 7(3):28, 2011.

[FYO+15] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masa-
fumi Yamashita. Pattern formation by oblivious asynchronous mobile
robots. SIAM Journal on Computing, 44(3):740–785, 2015.

[GC13] Enric Galceran and Marc Carreras. A survey on coverage path planning
for robotics. Robotics and Autonomous systems, 61(12):1258–1276, 2013.

[GCJT13] Simon Garnier, Maud Combe, Christian Jost, and Guy Theraulaz. Do
ants need to estimate the geometrical properties of trail bifurcations to
find an efficient route? a swarm robotics test bed. PLoS Computational
Biology, 9(3):e1002903, 2013. Dario Floreano, editor. url: https://doi.
org/10.1371%2Fjournal.pcbi.1002903.

[Gib85] Alan Gibbons. Algorithmic graph theory. Cambridge university press,
1985.

[GK07] Kevin R Gue and Byung Soo Kim. Puzzle-based storage systems. Naval
Research Logistics (NRL), 54(5):556–567, 2007.

[Gol04a] Martin C. Golumbic. Algorithmic graph theory and perfect graphs. Else-
vier, 2004.

[Gol04b] Martin C. Golumbic. Algorithmic graph theory and perfect graphs. Else-
vier, 2004.

[GR01] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of con-
tinuous areas by a mobile robot. Annals of mathematics and artificial
intelligence, 31(1-4):77–98, 2001.

[GS12] Charles Miller Grinstead and James Laurie Snell. Introduction to proba-
bility. American Mathematical Soc., 2012.

[HAB+03] Tien-Ruey Hsiang, Esther M. Arkin, Michael A. Bender, Sandor Fekete,
and Joseph S. B. Mitchell. Online dispersion algorithms for swarms of
robots. In Proceedings of the nineteenth conference on Computational
geometry - SCG 03. ACM Press, 2003. url: https://doi.org/10.1145/
777792.777854.

[HAB+04] Tien-Ruey Hsiang, Esther M Arkin, Michael A Bender, Sándor P Fekete,
and Joseph SB Mitchell. Algorithms for rapidly dispersing robot swarms
in unknown environments. In Algorithmic Foundations of Robotics V,
pages 77–93. Springer, 2004.

150

https://doi.org/10.1371%2Fjournal.pcbi.1002903
https://doi.org/10.1371%2Fjournal.pcbi.1002903
https://doi.org/10.1145/777792.777854
https://doi.org/10.1145/777792.777854

[HAK18] Erez Hartuv, Noa Agmon, and Sarit Kraus. Scheduling spare drones for
persistent task performance under energy constraints. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiA-
gent Systems, pages 532–540. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

[HB16] Attila Hideg and László Blázovics. Area coverage using distributed ran-
domized methods. In Cybernetics & Informatics (K&I), 2016, pages 1–5.
IEEE, 2016.

[HIK16] Richard H. Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of
Product Graphs, Second Edition (Discrete Mathematics and Its Applica-
tions). CRC Press, 2016.

[HL17a] Attila Hideg and Tamás Lukovszki. Uniform dispersal of robots with
minimum visibility range. In International Symposium on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics, pages 155–167. Springer, 2017.

[HL17b] Attila Hideg and Tamás Lukovszki. Uniform dispersal of robots with
minimum visibility range. In International Symposium on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics, pages 155–167. Springer, 2017.

[HL20] Attila Hideg and Tamás Lukovszki. Asynchronous filling by myopic lu-
minous robots. In International Symposium on Algorithms and Experi-
ments for Sensor Systems, Wireless Networks and Distributed Robotics,
pages 108–123. Springer, 2020.

[HMS02] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. An incremen-
tal self-deployment algorithm for mobile sensor networks. Autonomous
Robots, 13(2):113–126, 2002.

[HMW16] Peter Hegarty, Anders Martinsson, and Edvin Wedin. The hegselmann-
krause dynamics on the circle converge. Journal of Difference Equations
and Applications, 22(11):1720–1731, 2016.

[HOU95] Cem Hatipoglu, Umit Ozguner, and Konur A Unyelioglu. On optimal de-
sign of a lane change controller. In Proceedings of the Intelligent Vehicles’
95. Symposium, pages 436–441. IEEE, 1995.

[IK00] Wilfried Imrich and Sandi Klavžar. Product Graphs: Structure and Recog-
nition. Wiley-Interscience, 2000.

[IK08] Volkan Isler and Nikhil Karnad. The role of information in the cop-robber
game. Theoretical Computer Science, 399(3):179–190, 2008.

151

[JCMP17] Stefan Jorgensen, Robert H Chen, Mark B Milam, and Marco Pavone.
The risk-sensitive coverage problem: multi-robot routing under uncer-
tainty with service level and survival constraints. In 2017 IEEE 56th An-
nual Conference on Decision and Control (CDC), pages 925–932. IEEE,
2017.

[Joh00] Kurt Johansson. Shape fluctuations and random matrices. Communi-
cations in Mathematical Physics, 209(2):437–476, February 2000. url:
https://doi.org/10.1007/s002200050027.

[JS+79] Wm Woolsey Johnson, William Edward Story, et al. Notes on the “15”
puzzle. American Journal of Mathematics, 2(4):397–404, 1879.

[KA19] Ajay D. Kshemkalyani and Faizan Ali. Efficient dispersion of mobile
robots on graphs. In Proceedings of the 20th International Conference
on Distributed Computing and Networking, ICDCN ’19, pages 218–227,
Bangalore, India. ACM, 2019. url: http://doi.acm.org/10.1145/328859
9.3288610.

[KAGA19] D Knebel, A Ayali, M Guershon, and G Ariel. Intra-versus intergroup
variance in collective behavior. Science advances, 5(1):eaav0695, 2019.

[KES01] James F. Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm intelli-
gence. The Morgan Kaufmann series in evolutionary computation. Mor-
gan Kaufmann Publishers, San Francisco, 2001.

[KHM+15] Dominik Krupke, Michael Hemmer, James McLurkin, Yu Zhou, and Sán-
dor P Fekete. A parallel distributed strategy for arraying a scattered
robot swarm. In 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 2795–2802. IEEE, 2015.

[KK10] Thomas Kriecherbauer and Joachim Krug. A pedestrian’s view on inter-
acting particle systems, kpz universality and random matrices. Journal
of Physics A: Mathematical and Theoretical, 43(40):403001, 2010.

[Kra12] Eugene F. Krause. Taxicab Geometry: An Adventure in Non-Euclidean
Geometry (Dover Books on Mathematics). Dover Publications, 2012.

[KSA+21] Daniel Knebel, Ciona Sha-Ked, Noa Agmon, Gil Ariel, and Amir Ay-
ali. Collective motion as a distinct behavioral state of the individual.
Iscience, 24(4):102299, 2021.

[KV97] Jakob Krarup and Steven Vajda. On torricelli’s geometrical solution to a
problem of fermat. IMA Journal of Management Mathematics, 8(3):215–
224, 1997.

[Law10] Gregory F Lawler. Random walk and the heat equation, volume 55. Amer-
ican Mathematical Soc., 2010.

152

https://doi.org/10.1007/s002200050027
http://doi.acm.org/10.1145/3288599.3288610
http://doi.acm.org/10.1145/3288599.3288610

[Lin02] Torgny Lindvall. Lectures on the coupling method. Courier Corporation,
2002.

[LL12] Joseph La Salle and Solomon Lefschetz. Stability by Liapunov’s Direct
Method with Applications. Elsevier, 2012.

[LPW09] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov
chains and mixing times. American Mathematical Society, 2009.

[LV10] Yaroslav Litus and Richard T Vaughan. Fall in! sorting a group of robots
with a continuous controller. In 2010 Canadian Conference on Computer
and Robot Vision, pages 269–276. IEEE, 2010.

[LWZ+15] Zhuofan Liao, Jianxin Wang, Shigeng Zhang, Jiannong Cao, and Geyong
Min. Minimizing movement for target coverage and network connectivity
in mobile sensor networks. network, 4:8, 2015.

[Mat02] J. Matoušek. Lectures on Discrete Geometry (Graduate Texts in Mathe-
matics). Springer, 2002.

[MB18] Rotem Manor and Alfred M Bruckstein. Chase your farthest neighbour.
In Distributed Autonomous Robotic Systems, pages 103–116. Springer,
2018.

[MG07] Ryan Morlok and Maria Gini. Dispersing robots in an unknown envi-
ronment. In Distributed Autonomous Robotic Systems 6, pages 253–262.
Springer, 2007.

[MT93] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic
Stability. Springer London, 1993. url: https://doi.org/10.1007/978-1-
4471-3267-7.

[NGGD08] Jose E Naranjo, Carlos Gonzalez, Ricardo Garcia, and Teresa De Pe-
dro. Lane-change fuzzy control in autonomous vehicles for the overtak-
ing maneuver. IEEE Transactions on Intelligent Transportation Systems,
9(3):438–450, 2008.

[OFM07] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings of the IEEE,
95(1):215–233, 2007.

[PDE+01] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig
Lee. Pheromone robotics. Autonomous Robots, 11(3):319–324, 2001.

[Pel05] David Peleg. Distributed coordination algorithms for mobile robot swarms:
new directions and challenges. In International Workshop on Distributed
Computing, pages 1–12. Springer, 2005.

153

https://doi.org/10.1007/978-1-4471-3267-7
https://doi.org/10.1007/978-1-4471-3267-7

[PSS18] Thomas Petig, Elad M Schiller, and Jukka Suomela. Changing lanes on a
highway. In 18th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[PSZ09] M. Plumettaz, D. Schindl, and N. Zufferey. Ant local search and its effi-
cient adaptation to graph colouring. Journal of the Operational Research
Society, 61(5):819–826, April 2009. url: https://doi.org/10.1057/jors.
2009.27.

[RAB21] Dmitry Rabinovich, Michael Amir, and Alfred M. Bruckstein. Optimal
physical sorting of mobile agents, 2021. arXiv: 2111.06284.

[RAB22] Ori Rappel, Michael Amir, and Alfred M. Bruckstein. Stigmergy-based,
dual-layer coverage of unknown indoor regions, 2022. arXiv: 2209.08573
[cs.MA].

[RMB19] Katja Ried, Thomas Müller, and Hans J Briegel. Modelling collective
motion based on the principle of agency: general framework and the case
of marching locusts. PloS one, 14(2):e0212044, 2019.

[Ros81] Hermann Rost. Non-equilibrium behaviour of a many particle process:
density profile and local equilibria. Zeitschrift für Wahrscheinlichkeits-
theorie und Verwandte Gebiete, 58(1):41–53, 1981.

[RW90] Daniel Ratner and Manfred Warmuth. The (n2- 1)-puzzle and related
relocation problems. Journal of Symbolic Computation, 10(2):111–137,
1990.

[SA15] Masashi Shiraishi and Yoji Aizawa. Collective patterns of swarm dy-
namics and the lyapunov analysis of individual behaviors. Journal of the
Physical Society of Japan, 84(5):054002, 2015.

[SBT+17] Martin Saska, Tomas Baca, Justin Thomas, Jan Chudoba, Libor Preucil,
Tomas Krajnik, Jan Faigl, Giuseppe Loianno, and Vijay Kumar. System
for deployment of groups of unmanned micro aerial vehicles in gps-denied
environments using onboard visual relative localization. Autonomous Robots,
41(4):919–944, 2017.

[SCZ14] Beining Shang, Richard Crowder, and Klaus-Peter Zauner. Swarm be-
havioral sorting based on robotic hardware variation. In 2014 4th Inter-
national Conference On Simulation And Modeling Methodologies, Tech-
nologies And Applications (SIMULTECH), pages 631–636. IEEE, 2014.

[SCZ16] Beining Shang, Richard M Crowder, and Klaus-Peter Zauner. An ap-
proach to sorting swarm robots to optimize performance. In International
Design Engineering Technical Conferences and Computers and Informa-

154

https://doi.org/10.1057/jors.2009.27
https://doi.org/10.1057/jors.2009.27
https://arxiv.org/abs/2111.06284
https://arxiv.org/abs/2209.08573
https://arxiv.org/abs/2209.08573

tion in Engineering Conference, volume 50152, V05AT07A046. American
Society of Mechanical Engineers, 2016.

[SH06] Cheng Shao and Dimitrios Hristu-Varsakelis. Cooperative optimal con-
trol: broadening the reach of bio-inspiration. Bioinspiration & Biomimet-
ics, 1(1):1–11, March 2006.

[Spi91] Frank Spitzer. Interaction of markov processes. In Random Walks, Brow-
nian Motion, and Interacting Particle Systems, pages 66–110. Springer,
1991.

[SSW10] Robin Schubert, Karsten Schulze, and Gerd Wanielik. Situation assess-
ment for automatic lane-change maneuvers. IEEE Transactions on In-
telligent Transportation Systems, 11(3):607–616, 2010.

[Szt03] Marcelo Oscar Sztainberg. Algorithms for Swarm Robotics. PhD thesis,
State University of New York at Stony Brook, 2003.

[TW09] Craig A Tracy and Harold Widom. Asymptotics in asep with step ini-
tial condition. Communications in Mathematical Physics, 290(1):129–
154, 2009.

[VAT+16] F Visintainer, L Altomare, A Toffetti, A Kovacs, and A Amditis. Towards
manoeuver negotiation: autonet2030 project from a car maker perspec-
tive. Transportation Research Procedia, 14:2237–2244, 2016.

[WAYB08] Israel A Wagner, Yaniv Altshuler, Vladimir Yanovski, and Alfred M
Bruckstein. Cooperative cleaners: a study in ant robotics. The Inter-
national Journal of Robotics Research, 27(1):127–151, 2008.

[Win07] Peter Winkler. Mathematical mind-benders. CRC Press, 2007.

[WLB00] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. Mac
versus pc: determinism and randomness as complementary approaches
to robotic exploration of continuous unknown domains. the International
Journal of robotics Research, 19(1):12–31, 2000.

[WLB97] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. On-
line graph searching by a smell-oriented vertex process. In Proceedings of
the AAAI Workshop on On-Line Search. Citeseer, 1997.

[WN06] Alan FT Winfield and Julien Nembrini. Safety in numbers: fault toler-
ance in robot swarms. International Journal on Modelling Identification
and Control, 1(ARTICLE):30–37, 2006.

[XWX11] Haoxiang Xia, Huili Wang, and Zhaoguo Xuan. Opinion dynamics: a mul-
tidisciplinary review and perspective on future research. International
Journal of Knowledge and Systems Science (IJKSS), 2(4):72–91, 2011.

155

[YAK13] Roi Yehoshua, Noa Agmon, and Gal A Kaminka. Robotic adversarial
coverage: introduction and preliminary results. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 6000–
6005. IEEE, 2013.

[YAK15] Roi Yehoshua, Noa Agmon, and Gal A Kaminka. Frontier-based rtdp:
a new approach to solving the robotic adversarial coverage problem. In
Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 861–869. International Foundation for
Autonomous Agents and Multiagent Systems, 2015.

[YEE+09] Christian A Yates, Radek Erban, Carlos Escudero, Iain D Couzin, Jerome
Buhl, Ioannis G Kevrekidis, Philip K Maini, and David JT Sumpter.
Inherent noise can facilitate coherence in collective swarm motion. Pro-
ceedings of the National Academy of Sciences, 106(14):5464–5469, 2009.

[YOA+13] Ercan Yildiz, Asuman Ozdaglar, Daron Acemoglu, Amin Saberi, and
Anna Scaglione. Binary opinion dynamics with stubborn agents. ACM
Transactions on Economics and Computation (TEAC), 1(4):1–30, 2013.

[ZGM16] Yu Zhou, Ron Goldman, and James McLurkin. An asymmetric dis-
tributed method for sorting a robot swarm. IEEE Robotics and Automa-
tion Letters, 2(1):261–268, 2016.

156

מייצגות ביניהם והקשתות במרחב מקומות מייצגים הגרף של הצמתים כאשר גרף, על-ידי לייצוג הניתן

בתחום מדובר תיאורטית, מבט מנקודת אחד. זמן בצעד למקום ממקום לזוז סוכן של היכולת את

לשמש היכולים מתמטיים כלים ידועים לא כמעט - הוק" "אד להיות נוטה שלו המתמטית שהאנליזה

במקום לקבץ היא זו עבודה של מהמטרות אחת גרפים. על סוכנים מרובות מערכות בחקר אותנו

מערכות לחקר התחלה נקודת להוות יכול אשר כלים" "ארגז לבנות במטרה כאלה כלים מספר אחד

זו טכניקה סוכנים. בין זהויות" "חילוף של הרעיון את למשל, כולל, שלנו הכלים ארגז זה. מסוג

סוכנים ליצור על-מנת שלהם השמות את ולהחליף סוכנים זוג לקחת ניתן שלעיתים מההבחנה נובעת

סדר או שלהם, התזוזה שאופן משום למשל מתמטית, מבחינה אותם לנתח יותר שקל וירטואליים

פוטנציאל", "פונקציות כוללות עליהן שנדבר אחרות טכניקות להבנה. פשוט יותר שלהם הפעולות

של סטציונאריות והתפלגויות מתקשרים", "חלקיקים מערכות ההסתברות), בתורת (טכניקה צימוד

מרקוב. שרשראות

ii

תקציר

מערכות ברובוטיקה, ישומים לו שיש רחב, אינטרדיסציפלינרי תחום הן סוכנים מרובות מערכות

מבוזרת מערכת היא סוכנים מרובת מערכת וסוציולוגיה. ביולוגיה, המשחקים, תורת מבוזרות,

זו עבודה מסוימת. מטרה להשיג בכדי פעולה משתפים אשר אוטונומיים סוכנים ממספר המורכבת

רצוי. גלובאלי למצב להוביל יכולות פשוטים סוכנים בין לוקאליות אינטראקציות שבו באופן עוסקת

של ופרספקטיבה הטבע, בעולם הצופה ביולוג של פרספקטיבה פרספקטיבות: משתי זה נושא נחקור

פעמים הטבע, בעולם הנחילית. הרובוטיקה בתחום ליישמם שניתן אלגוריתמים לבנות המבקש מהנדס

נחילים ישרים, שבילים מוצאות או יוצרות נמלים ספונטני: באופן פעולה משתפים אורגניזמים רבות

בידיהן היה כאילו אור הבזקי מתאמות גחליליות זהה, תעופה לכיוון מתכנסים חגבים מיליוני של

להבין תהיה שלנו המטרה הביולוגית, בפרספקטיבה העוסק זו, עבודה של הראשון בחלק חול. שעון

כשהשאלה הסוכן, ברמת מאחוריהם העומדים ההתנהגות כללי את ולמדל הללו התהליכים את לעומק

של השני בחלק זאת, לעומת טבע". "אמא של מהאלגוריתמים ללמוד ניתן מה היא אותנו שמעניינת

ויעילים נכונים לביצועים המובילים סוכניים כללים ליצור נוכל כיצד ונשאל למהנדסים, נהפוך זו עבודה

נחיליים רובוטים הנכון, הלוקאלי האלגוריתם שבאמצעות נראה זו עבודה במהלך רובוטים. נחילי של

חלק של מהתרסקויות הנוצרים אי-סיפוק ומצבי שגיאות לתקן ידועות, בלתי סביבות למפות יכולים

אוטונומיים. רכבים של תנועה תהליכי וליעל שווה, באופן מטלות ולחלק לזהות מהנחיל,

גם לאפשר וכך פרדיגמה, אותה תחת טבעיים אורגניזמים של ונחילים רובוטים נחילי למדל בכוונתנו

תחום עומד זו גישה מאחורי הנושאים. לשני משותפות טכניקות של ופיתוח ב- שימוש וגם השוואה

להבין בכדי המחשב וממדעי מרובוטיקה בכלים להשתמש שואף אשר טבעיים", "אלגוריתמים הקרוי

כמקור הטבע מעולם בתופעות להשתמש גם כמו ציפורים, מעוף או נמלים שבילי כגון טבעיות תופעות

שימוש בהם נעשה אשר למודלים אלה תופעות של תרגום באמצעות וזאת לאלגוריתמים, השראה

הנמלית", "הרובוטיקה פרדיגמת היא בה להתרכז שבחרנו הפרדיגמה הנחילית. הרובוטיקה בתחום

החישובי הכוח שלהם, החישה טווח מבחינת מאד מוגבלים לנחיל ששייכים שהרובוטים מניחה אשר

עם אחד לתקשר שלהם והיכולת קודמות, זמן מנקודות אינפורמציה לזכור שלהם היכולת שלהם,

חברתיות חיות של נחילים של היכולת היא הנמלית הרובוטיקה פרדיגמת של ההשראה מקור השני.

החישה, יכולות אף על רצויות גלובאליות תוצאות ולהשיג פעולה לשתף חגבים או נמלים ציפורים, כגון

גם זו בפרדיגמה משתמשים אנחנו האינדיבידואלית. ברמה חיה כל של המוגבלות והחישוב התכנון,

בבואנו מנחה ככלל וגם מראש, מוגדרת מטרה עם נחיליים רובוטים עבור אלגוריתמים לתכנן בבואנו

אלגוריתם על-ידי מונחים היו כאילו פורמלי, באופן טבעיים אורגניזמים של נחילית התנהגות למדל

רובוטי.

ודיסקרטי סופי בחלל זזים שהסוכנים מניחות זו בעבודה בהם שנעסוק המתמטיים המודלים כל כמעט

i

המחשב. למדעי בפקולטה ברוקשטיין, אלפרד פרופסור של בהנחייתו בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך

Michael Amir and Alfred M Bruckstein. Probabilistic pursuits on graphs. Theoretical Com-
puter Science, 2019.

Michael Amir and Alfred M. Bruckstein. Minimizing Travel in the Uniform Dispersal Problem
for Robotic Sensors. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, pages 113–121, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems, 2019. (Visited on 07/30/2022).

Michael Amir and Alfred M. Bruckstein. Fast uniform dispersion of a crash-prone swarm. In
Proceedings of Robotics: Science and Systems, RSS ’20, 2020.

Michael Amir, Noa Agmon, and Alfred M Bruckstein. A discrete model of collective marching
on rings. International Symposium Distributed Autonomous Robotic Systems:320–334, 2021.

Dmitry Rabinovich*, Michael Amir*, and Alfred M. Bruckstein. Optimal physical sorting of
mobile agents, 2021. arXiv: 2111.06284.

Michael Amir, Noa Agmon, and Alfred M. Bruckstein. A locust-inspired model of collective
marching on rings. Entropy, 24(7):918, June 2022.

Ori Rappel*, Michael Amir*, and Alfred M. Bruckstein. Stigmergy-based, dual-layer coverage
of unknown indoor regions, 2022. arXiv: 2209.08573 [cs.MA].

Michael Amir, Yigal Koifman, Yakov Bloch, Ariel Barel, and Alfred M. Bruckstein. Multi-
agent distributed and decentralized geometric task allocation, 2022. arXiv: 2210 . 05552
[cs.MA].

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

https://arxiv.org/abs/2111.06284
https://arxiv.org/abs/2209.08573
https://arxiv.org/abs/2210.05552
https://arxiv.org/abs/2210.05552

גרפים על סוכנים מרובות מערכות

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

אמיר מיכאל

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2022 אוקטובר חיפה התשפג תשרי

גרפים על סוכנים מרובות מערכות

אמיר מיכאל

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 A Multi-Agent Systems on Graphs Toolbox
	2.2 Summary

	3 Natural Algorithms I: Ant-like Probabilistic Pursuits on Graphs
	3.1 Introduction
	3.2 Preliminary Characterizations
	3.3 Convergent and Stable Graphs
	3.3.1 Pseudo-modular Graphs
	3.3.2 Graph Products
	3.3.3 Planar and Chordal Graphs

	3.4 The Uniform Stationary Distribution
	3.5 Discussion

	4 Natural Algorithms II: A Locust-inspired Model of Collective Marching on Rings
	4.1 Introduction
	4.2 Related work
	4.3 Model and definitions
	4.4 Stabilization analysis
	4.4.1 Locusts on narrow ringlike arenas (k=1)
	4.4.2 Locusts on wide ringlike arenas (k > 1)

	4.5 Simulation and empirical evaluation
	4.6 Discussion

	5 Swarm Robotics I: Minimizing Energy in the Multi-Robot Uniform Dispersion Problem
	5.1 Introduction
	5.2 Model
	5.3 Find-Corner Depth-First Search
	5.3.1 Analysis
	5.3.2 The number of persistent states
	5.3.3 The impossibility of minimizing total travel for general grid environments

	5.4 Simulations, comparisons, and alternative strategies
	5.5 Discussion

	6 Swarm Robotics II: Uniform Dispersion With Crash-prone Robots
	6.1 Introduction
	6.1.1 Related work

	6.2 Model and System
	6.3 Dispersal and Spanning Trees
	6.3.1 Analysis
	6.3.2 Synchronous time and multiple sources

	6.4 Simulation and evaluation
	6.5 Analysis details
	6.5.1 Proof of Lemma 6.3.8
	6.5.2 Proof of Lemma 6.3.9
	6.5.3 Proof of Lemma 6.3.10
	6.5.4 Proof of Lemma 6.3.12
	6.5.5 Proof of Lemma 6.3.13

	6.6 Discussion

	7 Swarm Robotics III: Physical Sorting
	7.1 Introduction
	7.2 Related Work
	7.3 Model
	7.4 A lower bound on makespan
	7.5 Optimal algorithm for normal configurations
	7.6 Non-normal initial configurations
	7.7 Discussion
	7.7.1 An almost optimal distributed solution

	8 Conclusion
	Bibliography
	Hebrew Abstract

